TRAL
B'Ts

Treehouse tETH

Security Assessment

August 27, 2024

Prepared for:
Ben Loh
Treehouse Finance

Prepared by: Michael Colburn, Justin Jacob, Damilola Edwards, Emilio L6pez and David
Pokora

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be business confidential information; it is
licensed to Treehouse under the terms of the project statement of work and intended
solely for internal use by Treehouse. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications, if published, is the Trail of Bits
Publications page. Reports accessed through any source other than that page may have
been modified and should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits
Notices and Remarks

Table of Contents

Project Summary

Executive Summary

Project Goals

Project Targets

Project Coverage

Automated Testing

Functional Invariants

System Invariants

Codebase Maturity Evaluation

Summary of Findings

Detailed Findings

00 NN o o1l AW N =

. Incorrect accounting logic for stETH deposits

. Chainlink oracles could return stale price data

. Users can redeem tETH tokens to iETH

. Secrets checked into source code

. Use of outdated libraries

. Potential code execution through deserialization

. Overlapping and non-exhaustive conditions while analyzing cases
. Potentially duplicate event fetching

9.

Potentially misleading order comparison

A. Vulnerability Categories

B. Code Maturity Categories

C. Code Quality Recommendations

D. Automated Static Analysis
E. Fix Review Results

Detailed Fix Review Results
F. Fix Review Status Categories
G. Fix Review Test Cases

Trail of Bits 3

CONFIDENTIAL

O 00 U1 A W N =

10
13
13
14
15
19
20
20
22
23
25
27
28
30
32
34
35
37
39
a1
43
44

47
48

Treehouse tETH Security Assessment

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering directors were associated with this project:

David Pokora, Engineering Director, Application Security
david.pokora@trailofbits.com

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Michael Colburn, Consultant David Pokora, Consultant
michael.colburn@trailofbits.com david.pokora@trailofbits.com
Damilola Edwards, Consultant Justin Jacob, Consultant
damilola.edwards@trailofbits.com justin.jacob@trailofbits.com

Emilio Lépez, Consultant
emilio.lopez@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

July 8, 2024 Pre-project kickoff call

July 18, 2024 Status update meeting #1

July 29, 2024 Delivery of report draft

July 29, 2024 Report readout meeting

August 27, 2024 Delivery of report with fix review appendix

Trail of Bits 4 Treehouse tETH Security Assessment

CONFIDENTIAL

mailto:mary.obrien@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:damilola.edwards@trailofbits.com
mailto:justin.jacob@trailofbits.com
mailto:emilio.lopez@trailofbits.com

Executive Summary

Engagement Overview

Treehouse engaged Trail of Bits to review the security of the tETH contracts and offchain
code. tETH is a liquid restaking token that serves to converge the fragmented on-chain ETH
interest rates market. Holders of tETH earn yield through interest rate arbitrage while still
being able to use tETH for DeFi activities.

A team of two consultants from the blockchain team conducted a review focusing on the
smart contracts from July 10 to July 23, 2024, for a total of two engineer-weeks of effort.
Another team of two consultants from the appsec team conducted a separate review in
parallel focusing on the off-chain components from July 10 to July 26, for a total of two
engineer-weeks effort. Our testing efforts focused the identification of flaws that could
result in a compromise of confidentiality, integrity, or availability of the target systems. We
conducted this audit with full knowledge of the system. With full access to source code and
documentation, we performed static and dynamic testing of the smart contracts and
off-chain components, using automated and manual processes. The final off-chain code
was delivered a few days after the review started, on July 15. Towards the end of the smart
contract review period the Treehouse team provided additional code for review at commits
728d47 and a930e0 which was reviewed on a best effort basis.

Observations and Impact

The tETH smart contracts relies on privileged actors to manually perform necessary
operations; for example, operations related to PnL distribution, funding the redemption
contract to enable user withdrawals, updates to state variables that directly impact users’
solvency and funds, investments into and divestments from strategies. Additionally we
identified two issues related with integration with external protocols (TOB-TETH-1) and
(TOB-TETH-2). It is therefore important to highlight the need for a careful review of the
documentation and guidelines of protocols the system interacts with to ensure that the
integrations are done in line with the recommended best practices. Treehouse should also
pay attention to the security of the privileged actor accounts. The Treehouse team
mentioned they plan to use a Gnosis multi-signature wallet for this purpose, but the
support for this is not yet implemented in the offchain codebase.

Recommendations

Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that the Treehouse team take the following steps prior to
achieving deployment:

e Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations..

Trail of Bits 5 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/0xhypn/tETH-protocol/pull/53/commits/728d4748f8ba2316e698a99d266bbef0b33323dc
https://github.com/0xhypn/tETH-protocol/pull/53/commits/a930e0825b8a9d9acfa5f579fbdfaff91edd507b

o Identify all system properties that are expected to hold and use dynamic
end-to-end fuzz testing to validate those system properties.

e Implement a secure way to sign transactions on the off-chain component, that
preferably holds the keys on one or more secure hardware devices and
requires multi-party approval for a transaction to be processed. Currently, the
system only supports signing transactions with a hardcoded EOA wallet that is
embedded in the codebase, and the contracts are not controlled through a
multi-signature wallet. The Treehouse team mentioned they will be using
multi-signatory with multi-party approval for the transaction to be processed

e Significantly improve testing of off-chain components. Currently the off-chain
codebase does not have unit tests and test automation, and relies on a manual
scenario simulation script for manual testing.

¢ Implement automated CI/CD processes for the off-chain components. These
should include automated testing, dependency vulnerability checks (e.g. via
Dependabot), source code static analysis (e.g. via Semgrep or CodeQL) and pull
request review and approval criteria.

e Determine if there is a risk in interacting with public RPC providers in the
off-chain codebase and adjust accordingly. Relying on a single external RPC
provider as a source of truth could lead to a skewed view of the protocol state if the
provider is compromised or their nodes fork off the canonical chain. Sending
transactions through the public mempool could also allow for third-parties to
perform, for example, sandwich attacks. Consider performing RPC calls to one or
more private or self hosted nodes in parallel and compare their results. Evaluate
using a private mempool service to submit transactions to the chain.

e Use integer values for off-chain arithmetic. Floating point numbers may lose
precision in counterintuitive ways. For financial applications in which precision is
important, fixed-point math using big integers is a well-established best practice.
Python integers are of arbitrary length out of the box.

Trail of Bits 6 Treehouse tETH Security Assessment
CONFIDENTIAL

Finding Severities and Categories

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 1 Access Controls 1
Medium 0 Data Exposure 1
Low 2 Data Validation 6
Informational 5 Patching 1
Undetermined 1

Trail of Bits 7 Treehouse tETH Security Assessment

CONFIDENTIAL

Project Goals

The engagement was scoped to provide a security assessment of the tETH protocol.
Specifically, we sought to answer the following non-exhaustive list of questions:

e Could an attacker steal funds from the system?
e Are appropriate access controls in place?

e Are the arithmetic calculations performed during token minting and redeeming
operations correct?

e |s the protocol vulnerable to denial-of-service (DoS) attacks?

e Is the arithmetic for handling various types of collateral performed correctly?
e Are user-provided parameters sufficiently validated?

e Are there any economic attack vectors in the system?

e Does the protocol convert tokens to and from shares correctly?

e Isthe share price prone to manipulation?

e Could the use of low-level calls in the codebase cause any problems?

e Could a user’s funds become stuck in the system?

e Do the off-chain components query the chain state adequately?

e Are different chain states sufficiently validated in the off-chain components?

Trail of Bits 8 Treehouse tETH Security Assessment
CONFIDENTIAL

Project Targets

The engagement involved a review and testing of the targets listed below.

tETH protocol

Repository https://github.com/treehouse-gaia/tETH-protocol
Version ©2c3ab1fafa7610ba43fc3cc905ccad504b39cf3
Type Solidity

Platform EVM

tETH offchain

Repository https://github.com/treehouse-gaia/tETH-offchain

Version 2539d30504aec46d2a753fac2¢c18a3872691507a

Type Python

Platform Linux

Trail of Bits 9 Treehouse tETH Security Assessment

CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/tree/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3
https://github.com/treehouse-gaia/tETH-offchain/tree/2539d30504aec46d2a753fac2c18a3872691507a

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following;:

Trail of Bits

Deposits : The TreehouseRouter contract serves as the gateway for deposits into
the protocol, all deposited assets are sent to the vault and the depositor receives
tETH token in return. The contracts relevant to the deposit execution flow include
the TreehouseRouter, Vault, iETH and tETH contracts. We conducted the
following manual and automated reviews of these contracts:

o

We reviewed the conversion of assets to shares to ensure they were
performed correctly

We reviewed the use of access control modifiers to ensure that necessary
access controls are in place for privileged operations, this led to the

identification of issue (TOB-TETH-3) which allows users to directly convert
tETH tokens for iETH and potentially introducing errors in PnL accounting.

We reviewed the deposit flow to ensure that users cannot lose funds through
theft or unintended locks.

We reviewed the integration and interactions with external protocols to
ensure that the assumptions made do not introduce flaws in the system. Two
issues were identified in this regard (TOB-TETH-1) and (TOB-TETH-2).

Redemption: Redemption requests are handled via the TreehouseRedemption
contract, after the minimum waiting period is passed, users can then proceed to
finalize the withdrawal process, at this point, the underlying ETH/WETH is
transferred to the user. We conducted a the following manual and automated
reviews of the contracts relevant to the redemption flow:

o

o

o

We reviewed the access controls on the functions to ensure that only
privileged actors could update critical system values

We reviewed the redemption finalization flow to ensure that waiting periods
could not be bypassed

We reviewed the state changes that occur during the creation of redemption
requests, cancellations and finalizations to ensure consistency and the
possibility of re-entrances and replay attacks

Accounting : The accounting mechanism employed by the tETH protocol involves

the use of two separate tokens, tETH a yield-bearing ERC-4626 vault token which

10 Treehouse tETH Security Assessment

CONFIDENTIAL

represent shares and iETH an internal accounting unit representing the total value
in the vault and used for PnL calculation after harvest from strategies. We
conducted a the following manual and automated reviews of the contracts relevant
to the internal accounting:

o We reviewed the contract for flaws that would allow users to manipulate
share prices.

o We reviewed the interest accrual process to determine whether it is
vulnerable to front-running or sandwich attacks.

o We reviewed the arithmetic that is performed and the state changes that
occur during deposits, redemption requests, cancellations and finalizations
to identify any edge cases that may result in undefined behavior.

e Rate providers: The system relies on the rate provider contracts to query price
feeds and asset values, we conducted a manual review on these contracts to ensure
proper integration and data staleness checks, we found one issue related to this
(TOB-TETH-2)

e Strategies: The strategy folder consists of multiple contracts relating to
strategies and actions, we conducted a manual review on these components to
ensure general correctness and that the functions have the correct access controls
in place.

e Off-chain scripts: The system uses external programs that query the chain state
through a RPC provider, and can suggest and eventually execute rebalancing
operations to maintain the protocol strategy in a healthy state. We performed
automated and manual review of the code to check that its interaction with the
chain is correct and that it handles multiple states adequately. We identified several
issues in this component, including ones related to maintainability (TOB-TETH-4,
TOB-TETH-5), unsafe use of language functionality (TOB-TETH-6), the interaction with
the chain (TOB-TETH-8), and state analysis (TOB-TETH-7, TOB-TETH-9).

Coverage Limitations

Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

e We did not extensively search for front-running vulnerabilities.

e We did not review the high-level economic incentives and disincentives imposed by
the system.

Trail of Bits 11 Treehouse tETH Security Assessment
CONFIDENTIAL

e We did not review the off-chain arithmetic in depth, nor the associated strategy
logic, parameters, and its soundness in the context of the system. In particular, we
did not analyze the impact of performing floating-point arithmetic and the risk of
rounding errors it entails.

e In addition, the report does not include an integration found post review: the
TreehouseRedemption contract calls the WETH.withdraw function, but the
redemption contract is lacking a fallback or receive function. As a result WETH's
transfer will revert.

Trail of Bits 12 Treehouse tETH Security Assessment
CONFIDENTIAL

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

e Slither: A static analysis framework that can statically verify algebraic relationships
between Solidity variables

e Medusa: A cross-platform go-ethereum-based smart contract fuzzer inspired by
Echidna

e Semgrep: An open-source static analysis tool for finding bugs and enforcing code
standards when editing or committing code and during build time

e CodeQL: A code analysis engine developed by GitHub to automate security checks

Test Results

The tables below summarizes the type, property conditions and result of each invariants
fuzzed on the smart contract codebase. We ran the fuzzer both locally and on the cloud.

Functional Invariants

We ran the following invariants using Medusa to test functions in the TreehouseRouter
and TreehouseRedemption contracts to ensure that they behave as expected. They
include checks of preconditions and postconditions expected to hold in the system.

ID Property Result

F-TETH-1 StETH/wsETH/ETH balance of depositor should always Passed
decrease after a deposit

F-TETH-2 Vault's stETH/wsETH/ETH balance should always increase Passed
after a deposit

F-TETH-3 Total supply of tETH should always increase after deposits Passed
F-TETH-5 Depositor's balance of tETH should always increase after a Passed
deposit
Trail of Bits 13 Treehouse tETH Security Assessment

CONFIDENTIAL

https://github.com/crytic/slither
https://github.com/crytic/medusa
https://github.com/ethereum/go-ethereum/
https://github.com/crytic/echidna
https://github.com/returntocorp/semgrep
https://codeql.github.com/

F-TETH-6 Total supply of tETH should always decrease after redeem Passed

F-TETH-7 User’s balance of tETH should always decrease after Passed
redeem

F-TETH-8 cancelRedeem should always increase the user's tETH Passed
balance

F-TETH-9 finalizeRedeem should always increase user's ETH/WETH Passed
balance

F-TETH-10 finalizeRedeem should always reduce vault's ETH/WETH Passed
balance

System Invariants

Using medusa, we also added system invariants that check the relationship between global
system states. These invariants test the relationships between variables in the contract.
Unlike functional invariants, these invariants should hold true regardless of the functions
that are executed.

ID Property Result

S-TETH-1 Total ETH + WETH balance in the vault should never Passed
exceed deposit cap

S-TETH-2 Total supply of IETH should equal total asset value in vault Failed
S-TETH-3 Redemption timelocks should not be bypassable Passed
S-TETH-4 User with no access to ETH/WETH/wsETH should have no Passed

tETH shares

S-TETH-5 Users ETH/WETH balance should never exceed provided Passed
amount

Trail of Bits 14 Treehouse tETH Security Assessment
CONFIDENTIAL

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies

identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category

Arithmetic

Auditing

Authentication /
Access Controls

Complexity
Management

Trail of Bits
CONFIDENTIAL

Summary

The protocol uses Solidity 0.8.24 which has overflow
protection by default for arithmetic operations, and most
of the operations are documented with inline
documentation. Asset calculations rely on the
assumption that the dollar value of stETH would always
be equal to ETH, this could potentially introduce
accounting issues if stETH depegs.

The offchain code performs arithmetic using floating
point numbers, which may introduce precision errors.

All functions involved in critical state-changing operations
emit events. The codebase uses a wide variety of
informative events and error messages, which are
emitted at appropriate locations.

The offchain components provide sufficient logs for
tracking their internal state.

Most functions within the contracts are restricted by
access controls in place, permitting only privileged actors
to execute them. Users have limited control, primarily
restricted to deposits, creating and canceling redemption
requests, and finalizing redemptions. However, an issue
was identified due to the lack of access control on an
implicitly inherited function in the tETH contract
(TOB-TETH-3). Given the presence of multiple privileged
actors performing different roles, it would be beneficial
to document these roles and the actions they are
authorized to perform.

The smart contract codebase contains a significant
number of contracts, however they are easy enough to

Result

Satisfactory

Satisfactory

Moderate

Moderate

15 Treehouse tETH Security Assessment

reason through and most of the complexity is left to be
handled by the strategy manager via the off-chain
components. Each contract in the protocol has a clear
purpose, and there are no signs of excessive inheritance
or high cyclomatic complexity. All functions are concise,
are well documented, have a clear purpose, and are
appropriately tested.

The off-chain codebase is also generally modularized and
separated into functions; however it contains multiple
instances of code duplication, commented-out code, and
special-casing, which reduce maintainability, readability,
and hamper reasoning about the code.

Configuration As the system is in development, a production Not
configuration is not yet available. The current Considered
development configuration contains hard-coded keys,
which are not suitable for a production launch. The team
expressed that the off-chain component will gain support
for managing funds through a multi-signature setup
before launch.

Cryptography The system does not perform cryptographic operations Weak
and Key directly on the off-chain component, and relies on
Management third-party libraries such as web3.py to perform

operations such as transaction signing. However,
multiple APl and wallet keys are currently hardcoded in
the code or committed as part of the repository. There is
no implemented support for safe runtime provisioning of
secrets, e.g. via a secrets vault or password manager.

Data Handling The system generally validates the data it operates on. Moderate
We did however find some issues related to data
validation in the on-chain (TOB-TETH-2) and off-chain
(TOB-TETH-6, TOB-TETH-7) components.

Decentralization The system's operations depend on certain privileged Weak
actors manually executing essential tasks (via off-chain
executions). These tasks include operations related to
profit and loss distribution, user withdrawals, updating
state variables affecting user solvency and funds, and
managing investments and divestments. Due to the
extensible nature of the portfolio management system,
privileged actors can perform arbitrary actions.

Trail of Bits 16 Treehouse tETH Security Assessment
CONFIDENTIAL

Documentation

Low-Level
Manipulation

Maintenance

Memory Safety
and Error
Handling

Testing and
Verification

Trail of Bits
CONFIDENTIAL

Additionally, the Rescuable contract includes a provision
that allows the retrieval of any uninvested funds from the
Vault.

The code is generally well commented using natspec
style. The supplied documentation regarding the system
design, architecture and descriptions of the onchain and
offchain components were generally sufficient.

The use of double delegatecall in the strategy flow raises
concerns, as it could potentially lead to unintended
consequences, such as inadvertently corrupting storage
when more advanced strategies are developed. It is
advisable to establish guidelines for writing delegate calls
to prevent such issues. Additionally, the use of assembly
is currently limited to checking the return value of
delegate calls.

The off-chain code is organized into logical modules;
however, duplicated and commented-out code reduce
readability and hinder maintainability. The lack of unit
tests also make it difficult to introduce changes to the
system with confidence that they do not include
regressions or unexpected changes in behavior. The
system could also benefit from the use of tools such as
Dependabot in Cl to automatically keep dependencies up
to date in the repository, as well as automated CI/CD
workflows to execute tests, perform static analysis and
enforce a coding style.

The off-chain components are built using Python, which
is memory safe. Errors are generally checked and
handled appropriately.

The smart contract codebase contains several unit and
integration tests, these tests appear to cover most
common use cases of the protocol and test a fair number
of potential reverts or other scenarios outside of the
“happy path.”

However, there is no targeted fuzz testing of arithmetic
operations, invariants, or function properties.
Furthermore, there is no mutation testing.

These methodologies can expose unforeseen edge cases

Strong

Moderate

Weak

Satisfactory

Moderate

17 Treehouse tETH Security Assessment

or anomalies that regular testing might miss. Fuzzing
involves testing with random data inputs to trigger
unhandled exceptions or crashes, while mutation testing,
a method of code quality validation, alters the software
code in small ways to assess whether the test cases can
distinguish the original code from the mutated one.

These can help ensure the resistance of the application
against potential unusual inputs or behaviors.

The off-chain component is currently lacking unit testing.
While there is a “stress test” script that works as a sort of
fuzz test, fuzzing specific functionality could also prove

beneficial.
Transaction Yield aggregator protocols in general are vulnerable to Further
Ordering front-running issues especially during profit harvesting; Investigation
the codebase should undergo a more in-depth review to Required

find these vulnerabilities.

Trail of Bits 18 Treehouse tETH Security Assessment
CONFIDENTIAL

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Incorrect accounting logic for stETH deposits Data Validation Low

2 Chainlink oracles could return stale price data Data Validation Informational

3 Users can redeem tETH tokens to iETH Access Controls Informational

4 Secrets checked into source code Data Exposure Low

5 Use of outdated libraries Patching Informational

6 Potential code execution through deserialization Data Validation High

7 Overlapping and non-exhaustive conditions while Data Validation Undetermined

analyzing cases

8 Potentially duplicate event fetching Data Validation ‘ Informational
9 Potentially misleading order comparison Data Validation ‘ Informational
Trail of Bits 19 Treehouse tETH Security Assessment

CONFIDENTIAL

Detailed Findings

1. Incorrect accounting logic for stETH deposits
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-TETH-1

Target: contracts/TreehouseRouter.sol,
contracts/periphery/Converter.sol

Description

An edge case in the way stETH token transfers work may result in a small wei discrepancy
when depositing tokens via the TreehouseRouter contract or when converting stETH via
the Converter contract.

StETH is a rebasing token that updates daily to account for staking yield. To support this
behavior, the stETH contract tracks each user's shares of the overall pool of ether, which is
used to determine their balance of stETH tokens. When transferring tokens, the value is
first converted to shares, and it is these shares that are actually transferred from one
address to another. Converting between tokens and shares requires integer division that
may result in slightly fewer stETH tokens being transferred than expected.

The TreehouseRouter contract's deposit function considers the ether value of the
deposited stETH to correspond to the amount value passed as a parameter. As a result, the
contract may then mint slightly more iETH tokens to the caller than they actually deposited.
The maximum size of this discrepancy is expected to grow over time as Lido continues to
grow and accrue staking rewards.

77 function deposit(address _asset, uint256 _amount) public nonReentrant
whenNotPaused {

78 if (IVault(VAULT).isAllowableAsset(_asset) == false) revert
NotAllowableAsset();

79 uint _valuelInEth;

80

81 if (_asset == stETH) {

82 _valueInEth = _amount;

83

84 IERC20(stETH) .safeTransferFrom(msg.sender, address(this), _amount);

85 uint wstethAmount = IwstETH(payable(wstETH)).wrap(_amount);

86 IERC20(wstETH) .transfer(VAULT, wstethAmount);

87 } else if (_asset == wstETH) {

88 _valueInEth = IwstETH(payable(wstETH)).getStETHBYWstETH(_amount);
Trail of Bits 20 Treehouse tETH Security Assessment

CONFIDENTIAL

https://docs.lido.fi/guides/lido-tokens-integration-guide/#1-2-wei-corner-case

89

90 IERC20(wstETH) .safeTransferFrom(msg.sender, VAULT, _amount);
91 } else {

92 _valueInEth = _getDepositInEth(_asset, _amount);

93 IERC20(_asset).safeTransferFrom(msg.sender, VAULT, _amount);
94 }

95

96 _checkEthCap(_valueInEth);

97 uint _shares = _mintAndStake(_valueInEth);

98 emit Deposited(_asset, _amount, _valueInEth, _shares);

99 }

Figure 1.1: The deposit function from the TreehouseRouter contract
(tETH-protocol/contracts/TreehouseRouter.sol#L77-L99)

Exploit Scenario

Many users deposit stETH into the protocol which results in many instances of small
amounts of excess iETH being minted. Over time this tracking error may become large
enough to have a noticeable impact on PnL accounting or other unexpected side effects.

Recommendations

Short term, snapshot the contract's stETH balance before and after the
safeTransferFrom call and set _valueInEth and the value passed to wrap to the
difference in the balance to accurately reflect the amount of stETH that was actually taken
from the caller.

Long term, carefully review the Lido integration documentation and ensure all known edge
cases are accounted for when designing new features.

References
e Lido tokens integration guide

Trail of Bits 21 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L77-L99
https://docs.lido.fi/guides/lido-tokens-integration-guide/

2. Chainlink oracles could return stale price data
Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-TETH-2

Target: contracts/rate-providers/ChainlinkRateProvider.sol

Description

The latestRoundData() function from Chainlink oracles returns five values: roundId,
answer, startedAt, updatedAt, and answeredInRound. The ChainlinkRateProvider
contract reads only the answer value and discards the rest. This can cause outdated prices
to be used for token conversions.

45 function getRate() external view override returns (uint256) {
46 (, int256 price, , ,) = pricefeed.latestRoundData();

47 require(price > 0, 'Invalid price rate response');

48 return uint256(price) * _scalingFactor;

49 }

Figure 2.1: All returned data other than the answer value is ignored during the call to a
Chainlink feed'’s 1atestRoundData method.
(tETH-protocol/contracts/rate-providers/ChainlinkRateProvider.sol#L45-149

)

According to the Chainlink documentation, if the 1latestRoundData() function is used,
the updatedAt value should be checked to ensure that the returned value is recent
enough for the application.

Recommendations
Short term, make sure that the oracle queries check for up-to-date data and revert or
return a sentinel value (e.g., 0) to indicate stale data.

Long term, review the documentation for Chainlink and other oracle integrations to ensure
that all of the security requirements are met to avoid potential issues, and add tests that
take these possible situations into account.

Trail of Bits 22 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/rate-providers/ChainlinkRateProvider.sol#L45-L49
https://docs.chain.link/data-feeds#check-the-timestamp-of-the-latest-answer

3. Users can redeem tETH tokens to iETH
Severity: Informational Difficulty: Low
Type: Access Controls Finding ID: TOB-TETH-3

Target: Contracts/tETH.sol

Description
The tETH contract exposes the withdraw and redeem functions from the inherited
ERC4626 token contract, this allows any user to redeem their tETH tokens for iETH.

iETH tokens are minted purely for accounting purposes, during deposits, the iETH token is
minted equivalent to the ETH value of the amount of asset deposited and burned during
the finalization of redemption. The iETH token is also used in estimating total profit or loss
accrued over a period of time and then is rebased to maintain a 1:1 peg between tETH and
ETH. Ideally the total supply of iETH should be held in the tETH contract since it represents
the total share value.

However, due to the absence of access controls on the inherited withdraw and redeem
functions in the tETH contract, users can directly convert their tETH tokens to iETH,
although iETH cannot be directly converted to ETH within the protocol, this action could
lead to unintended side effects like potentially introducing accounting miscalculations
(depending on how pnl accounting is performed on the offchain side) or possible
frontrunning/backrunning attacks.

210 function redeem(uint256 shares, address receiver, address owner) public
virtual returns (uint256) {

211 uint256 maxShares = maxRedeem(owner);

212 if (shares > maxShares) {

213 revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
214 }

215

216 uint256 assets = previewRedeem(shares);

217 _withdraw(_msgSender(), receiver, owner, assets, shares);

218

219 return assets;

220 }

Figure 3.1: Invokable redeem function in the OZ ERC4626 token contract implementation.

Trail of Bits 23 Treehouse tETH Security Assessment
CONFIDENTIAL

Recommendations

Short term, consider adding access controls on the inherited redeem and withdraw
functions within the tETH contract in order to revoke direct access or allow only specific
users access.

Long term, carefully review all public and external functions within imported
libraries/dependencies and add proper access controls on functions that should not be
invoked directly by users.

Trail of Bits 24 Treehouse tETH Security Assessment
CONFIDENTIAL

4. Secrets checked into source code
Severity: Low Difficulty: High
Type: Data Exposure Finding ID: TOB-TETH-4

Target: tETH-offchain/utils/web3_func.py,
tETH-offchain/src/env_handler/fork_blockchain.py,
tETH-offchain/config/thirdparty_config/strat_config_thirdparty.yml,
tETH-offchain/config/deploy_config/strat_config_deploy.yml

Description

Several secrets, including API keys and Ethereum private keys, are checked into the source
code repository and present in the Git history. If attackers have access to the application
source code, they would have access to said secrets. Additionally, checking the shared
secret into the source code repository gives all employees and contractors with access to
the repository access to the secrets. Secret values such as API keys and Ethereum private
keys should never be stored in plaintext in source code repositories, as they can become
valuable tools to attackers if the repository is compromised. The figures below show a few
samples of the identified secrets, but these are not an exhaustive list.

"eth":
f"https://api.etherscan.io/api?module=contract&action=getabi&address={cid}&apikey=RE
DACTED_KEY",

Figure 4.1: Example Etherscan API key present in the repository
(tETH-offchain/utils/web3_func.py)

DEFAULT_RPC_URL = "https://mainnet.infura.io/v3/REDACTED_KEY"

Figure 4.2: Example Infura key present in the codebase
(tETH-offchain/src/env_handler/fork_blockchain.py)

DEPLOYER_PRIVATE_KEY: '@XREDACTED'
PREFERRED_NODE_URL : https://rpc.buildbear.io/REDACTED
Figure 4.3: Example private key and Buildbear key
(tETH-offchain/config/deploy_config/strat_config_deploy.yml)

The severity has been marked as low, as the system is not yet in production and these keys
correspond to testing instances.

Trail of Bits 25 Treehouse tETH Security Assessment
CONFIDENTIAL

Exploit Scenario

An attacker obtains a copy of the source code from a former employee. She extracts the
API keys for Etherscan and the Ethereum node RPC and performs multiple requests,
causing increased monetary expenses for the Treehouse team, or a denial of service due to
quota exhaustion when the Treehouse portfolio manager attempts to run the off-chain
components. She also extracts the deployer private key and performs unauthorized
operations on-chain with it.

Recommendations
Short term, remove the hard-coded secrets from source code and rotate their values.

Long term, consider storing the secrets in a secret management solution such as
1Password or Hashicorp Vault. Use tools such as Trufflehog on your CI/CD pipeline to
detect secrets mistakenly committed to the repository.

References
e GitHub: Removing sensitive data from a repository

Trail of Bits 26 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/trufflesecurity/trufflehog
https://help.github.com/articles/removing-sensitive-data-from-a-repository/

5. Use of outdated libraries
Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-TETH-5

Target: tETH-offchain/requirements. txt

Description
We used pip audit to detect the use of outdated dependencies in the offchain codebase,
which identified a number of vulnerable packages referenced by the requirements. txt.

The following is a list of the vulnerable dependencies used in the offchain codebase, and
known vulnerabilities that affect the versions currently used by the codebase:

e aiohttp (PYSEC-2024-24, PYSEC-2023-250, PYSEC-2023-251, PYSEC-2024-26,
GHSA-7gpw-8wmc-pm8g, GHSA-5m98-qgg9-wh84)

certifi (GHSA-248v-346w-9cwc)

eth-abi (GHSA-3qwc-47jf-5rf7)

idna (PYSEC-2024-60)

requests (GHSA-9wx4-h78v-vm56)

urllib3 (GHSA-34jh-p97f-mpxf)

In many cases, the use of a vulnerable dependency does not necessarily mean the
application is vulnerable. Vulnerable methods from such packages need to be called within
a particular (exploitable) context. To determine whether the offchain applications are
vulnerable to these issues, each issue will have to be manually triaged. The severity is
marked informational as upon preliminary inspection, these issues do not appear to
impact the offchain codebase.

Recommendations
Short term, update system dependencies to their latest versions wherever possible. Use
tools such as pip audit to confirm that no vulnerable dependencies remain.

Long term, implement these checks as part of the CI/CD pipeline of application
development. Integrate an automated solution such as Dependabot into your development
process to assist in promptly detecting and updating dependencies with known security
problems.

Trail of Bits 27 Treehouse tETH Security Assessment
CONFIDENTIAL

6. Potential code execution through deserialization
Severity: High Difficulty: High
Type: Data Validation Finding ID: TOB-TETH-6

Target: tETH-offchain/utils/web3_func.py

Description

The offchain codebase loads contract ABIs from files and deserializes them into Python
objects through the pickle.load function. If any of this data comes from untrusted input
controlled by an attacker, this can lead to remote code execution (since pickle can execute
arbitrary code that would be encoded within the data).

def load_contract_abi(chain: str, address: str):
#(...)
file_name
file_path

f"abi_{chain}_{address}.pkl"
os.path.join(ABI_DIR, file_name)

if os.path.isfile(file_path):
with open(file_path, "rb") as f:
abi = pickle.load(f)
return abi
else:
msc_logger.error(f"Cannot find abi file locally for {address}")
raise Exception(f"Cannot find abi file locally for {address}")

Figure 6.1: The data is loaded and deserialized using pickle.load
(tETH-offchain/utils/web3_func.py)

While these files appear to be generated from the program itself during execution as a sort
of caching mechanism, there is no validation performed to ensure that they are
trustworthy and have not been tampered with.

Exploit Scenario

An attacker with access to the code repository or the portfolio manager's computer
replaces one of the pickle files with a malicious copy that, when loaded, patches the
executing code to silently modify the on-chain transactions generated by the program.
When the portfolio manager executes the offchain code and the pickle file gets loaded, the
process produces malicious transactions, leading to unexpected system state or a loss of
funds.

Trail of Bits 28 Treehouse tETH Security Assessment
CONFIDENTIAL

https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.
https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.

Recommendations

Short term, consider using a different data file format that is not prone to the same
vulnerabilities (e.g., JSON). If pickle files are essential to the system, ensure that all pickle
files come from trusted sources and are explicitly reviewed. If possible, consider signing the
pickle file to ensure that unreviewed pickle files are not executed by the system.
Additionally, add relevant code comments to inform future reviewers that the specific use
is safe.

References
e Never a dill moment: Exploiting machine learning pickle files

Trail of Bits 29 Treehouse tETH Security Assessment
CONFIDENTIAL

https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/

7. Overlapping and non-exhaustive conditions while analyzing cases
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-TETH-7

Target: tETH-offchain/utils/print_func.py

Description

The codebase has a printAnalysisResult function that interprets a value in the context
of a set of bounds and thresholds and returns an identifier for each type of state. This
identifier is sometimes used by the caller to determine if further actions need to be taken.
However, the function's implementation does not exhaustively cover all possibilities for the
“crossing up” case, and checks overlapping cases on the “crossing down” case. This could
eventually result in a misinterpretation of the data being shown or used.

For the “crossing up” case, assuming lower_bound <= upper_bound <= threshold, we
can see in figure 7.1 that the first conditional covers the [lower_bound, upper_bound]
range ", the second conditional covers the (-inf, lower_bound) range , the third
conditional covers the (upper_bound, threshold) value ?, and the fourth conditional
covers the (threshold, +inf) range . When combined, these ranges cover the majority
of the values, with the exception of the threshold value itself.

if threshold_type == "crossing_up":

if lower_bound <= value <= upper_bound: # (1)
sta_logger.info(f"[{LVL_1}] {metric_name} is within the bounds.")
alert = f"metric_name_{LVL_1}"
alert_level = f"{LVL_1}_within_bounds"

elif value < lower_bound: # (2)
sta_logger.info(f"[{LVL_2}] {metric_name} is below lower bound.")
action needed
alert_level = f"{LVL_2}_below_lower"

elif upper_bound < value < threshold: # (3)
sta_logger.info(f"[{LVL_2}] {metric_name} is above upper bound.")
manager decision
alert_level = f"{LVL_2}_above_upper"

elif value > threshold: # (4)
sta_logger.info(f"[{LVL_3}] {metric_name} is above threshold level.")
action needed
alert_level = f"{LVL_3}_above_thres"

Figure 7.1: The “crossing up” logic in printAnalysisResult
(tETH-offchain/utils/print_func.py)

Trail of Bits 30 Treehouse tETH Security Assessment
CONFIDENTIAL

This means that, if value is equal to threshold, alert_level will not be set and nothing
will be logged, which is likely not intentional.

In the “crossing down” case, assuming threshold <= lower_bound <= upper_bound,
we can see in figure 7.2 that the first conditional covers the [lower _bound,
upper_bound] case ", the second conditional covers the (-inf, lower_bound) range @,
the third conditional covers the (upper_bound, +inf) range ® and the fourth
conditional “ is dead code - any such cases will be covered by ? already, as threshold <=
lower_bound).

elif threshold_type == "crossing_down":
if lower_bound <= value <= upper_bound: # (1)
sta_logger.info(f"[{LVL_1}] {metric_name} is within the bound.")
no action needed
alert_level = f"{LVL_1}_within_bounds"

elif value < lower_bound: # (2)
sta_logger.info(f"[{LVL_3}] {metric_name} is below lower bound.")
action needed
alert_level = f"{LVL_3}_below_lower"

elif upper_bound < value: # (3)
sta_logger.info(f"[{LVL_2}] {metric_name} is above upper bound.")
manager decision
alert_level = f"{LVL_2}_above_upper"

elif value < threshold: # (4)
sta_logger.info(f"[{LVL_3}] {metric_name} is below threshold level.")
action needed
alert_level = f"{LVL_3}_below_thres"

Figure 7.2: The “crossing down” logic in printAnalysisResult
(tETH-offchain/utils/print_func.py)

This means that the threshold alert will never trigger on the “crossing down” case, which is
unlikely to be the intended behavior.

Recommendations

Short term, adjust the conditionals so that they cover the expected ranges and work as
intended. Document the relationship between threshold, lower and upper bound values.
Write unit tests for this function to ensure it continues to behave as intended.

Long term, enhance the testing suite of off-chain components to verify functions perform
as expected. implement automated runs of said tests as part of the CI/CD pipeline of
application development.

Trail of Bits 31 Treehouse tETH Security Assessment
CONFIDENTIAL

8. Potentially duplicate event fetching
Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-TETH-8

Target: tETH-offchain/utils/pool_func.py

Description

The codebase has a getPoolEvents function that is currently used to collect Lido's
TokenRebased events from the chain. This function repeatedly queries the RPC for any
events between a series of blocks, combines them into a single list, and returns the
information. However, the function may collect and return the same event more than once,
which can be unexpected and may skew the results of, for instance, the Lido staking APR
SMA.

start = _start_block

end = _end_block if _end_block is not None else web3.eth.get_block_number()
event_list = []

step = (end - start) // delta

for i in range(©, step + 1, 1):
sBlock = start + i * delta
eBlock = sBlock + delta
(...) get the events in blocks [sBlock, min(eBlock, end)]

Figure 8.1: The logic used to split a large block range into smaller ones
(tETH-offchain/utils/pool_func.py)

The function will perform a series of queries that each span a delta amount of blocks. The
end block used on a query will be the start block of the following query. However, the RPC

queries used to fetch the logs take an inclusive [fromBlock, toBlock] range, asseen on
the implementation by Go Ethereum and on ethers.js documentation. This means that any
events that happen on a block number that is on the edge of a query will be received twice.

For example, for a delta of 49999, a start block of 10000 and end of 109998, the code will
query the ranges [10000, 59999], [59999, 109998], [109998, 109998]. Any events
on blocks 59999 and 109998 will be duplicated.

Recommendations

Short term, verify this behavior with your RPC provider and update the code to not query
events on the same block twice. Anecdotal evidence on the Internet suggests this behavior
may vary on other RPC implementations. Alternatively, deduplicate events based on unique

Trail of Bits 32 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/ethereum/go-ethereum/blob/v1.14.7/eth/filters/filter.go#L319-L324
https://docs.ethers.org/v5/api/providers/types/#providers-Filter
https://ethereum.stackexchange.com/questions/8199/are-both-the-eth-newfilter-from-to-fields-inclusive#comment162776_8219

data such as their transaction hash. Add unit tests to ensure that the function behaves as
expected on edge cases such as this one.

Long term, review the documentation when integrating with third-party libraries and
services and be aware of their specific behavior on edge cases.

Trail of Bits 33 Treehouse tETH Security Assessment
CONFIDENTIAL

9. Potentially misleading order comparison
Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-TETH-9

Target: tETH-offchain/src/execution/analyze_execution.py

Description

The codebase has a compare_order function that is used to compare an on-chain
(simulated) order with an off-chain suggestion. According to the function documentation, if
the on-chain order value matches, within a certain tolerance, the value computed for the
off-chain suggestion, the function returns true, otherwise it returns false. However, the
implementation will also always return true if the on-chain order has not yet been
simulated, irrespective of the order value, which could be unexpected and misleading.

This behavior is documented with a TODO comment in the implementation code, as shown
on figure 9.1.

isSimulated = onchain_order["isSimulated"]

TODO: The logic here need to be updated.
Technically the unsimulated order should not reach here. But the current logic
may reach here. So I just keep this first, avoiding affecting the whole script.
if isSimulated:

(...) perform the comparison and return True or False
else:

return True

Figure 9.1: The logic used to handle unsimulated orders
(tETH-offchain/src/execution/analyze_execution.py)

Recommendations

Short term, update the function to throw an error or return false or a different sentinel
value if comparing unsimulated orders is unacceptable. Correct any calling code paths to
ensure no unsimulated orders reach this function. Add a test to ensure unsimulated orders
are identified and handled correctly.

Long term, document any specific requirements in the function documentation, so that
users are aware of such caveats. Follow the principle of least astonishment when
implementing helper functions.

Trail of Bits 34 Treehouse tETH Security Assessment
CONFIDENTIAL

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
CONFIDENTIAL

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

35 Treehouse tETH Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty
Undetermined

Low
Medium

High

Trail of Bits
CONFIDENTIAL

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

36 Treehouse tETH Security Assessment

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this

document.

Code Maturity Categories

Category
Arithmetic
Auditing

Authentication /
Access Controls

Complexity
Management

Configuration

Cryptography and
Key Management

Data Handling

Decentralization

Documentation

Low-Level
Manipulation

Maintenance

Memory Safety

and Error Handling

Testing and
Verification

Transaction
Ordering

Trail of Bits
CONFIDENTIAL

Description
The proper use of mathematical operations and semantics
The use of event auditing and logging to support monitoring

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

The configuration of system components in accordance with best
practices

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

The safe handling of user inputs and data processed by the system

The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

The presence of comprehensive and readable codebase documentation

The justified use of inline assembly and low-level calls

The timely maintenance of system components to mitigate risk

The presence of memory safety and robust error-handling mechanisms

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

The system'’s resistance to transaction-ordering attacks

37 Treehouse tETH Security Assessment

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.
Satisfactory Minor issues were found, but the system is compliant with best practices.
Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further Further investigation is required to reach a meaningful conclusion.
Investigation
Required

Trail of Bits 38 Treehouse tETH Security Assessment

CONFIDENTIAL

C. Code Quality Recommendations

The following recommendations are not associated with any specific vulnerabilities.
However, they will enhance code readability and may prevent the introduction of
vulnerabilities in the future.

101

There are many instances where an if statement is compared against the Boolean
true or false directly. The comparison to true or false values can be dropped to
simplify the code.

78 if (IVault(VAULT).isAllowableAsset(_asset) == false) revert
NotAllowableAsset();

Figure C.1: An example of an if statement with an unnecessary Boolean comparison.
(tETH-protocol/contracts/TreehouseRouter.sol#78)

The variable names of the constants of the MainnetLidoAddresses contract do
not follow the ALL_CAPS naming convention for constant values.

There are several instances of unchecked blocks being used to manually optimize
simple loop increments. As these contracts specify Solidity 0.8.24, they benefit from
the built-in optimization added in version 0.8.22 that automatically optimizes this as
part of the compiling process, rendering these unchecked blocks redundant.

function whitelistActions(uint _strategyId, bytes4[] calldata

_whitelistedActions) external onlyOwner {

102
103

for (uint i; i < _whitelistedActions.length;) {
if

(parameters[_safeGetStrategyAddress(_strategyId)].whitelistedActions.add(_whiteliste
dActions[i]) == false)

104
105
106
107
108
109
110
111
112

revert AlreadyExist();
emit ActionWhitelisted(_whitelistedActions[i]);
unchecked {

}
}
}
Figure C.2: An example of an unnecessary unchecked block.
(tETH-protocol/contracts/strategy/StrategyStorage.sol#101-112)

There are large amounts of commented-out code on the offchain codebase. If the
code is no longer needed, it should be removed to improve readability and
maintainability.

Trail of Bits 39 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L78-L78
https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/strategy/StrategyStorage.sol#L101-L112

e The offchain codebase contains several blocks of code that are duplicated several
times with minimal changes, for example in the validate_order function. Such
code should be refactored to improve maintainability and readability.

e Multiple files in the offchain codebase contain code that adjusts sys.pathin
runtime. The code should be reorganized to make proper use of packages and
modules, and a way to install the solution should be added to the repository.

e The offchain codebase contains multiple magic values hardcoded throughout the
files, a few examples are shown below. These should be either converted to
constants or moved to the configuration files. Some don’t match the documentation
that accompanies them (e.g., in figure C.4 it says 20% but calculates 30% instead).

tolerance = 1 / 100 # 1% slippage

Figure C.3: A hardcoded tolerance value
(tETH-offchain/src/execution/analyze_execution.py#112)

STAKE_RATE_LOWER
STAKE_RATE_UPPER

STAKE_RATE_THRES * 1.05 # 5% higher than borrow rate
STAKE_RATE_THRES * 1.3 # 20% higher than borrow rate

Figure C.4: Hardcoded lower and upper percentage bounds
(tETH-offchain/src/state_handler/analyze_state.py#139-140)

e The fork_blockchain function currently sleeps for 10 seconds while anvil starts
and the forked chain becomes usable. This could be improved and made more
reliable by performing a health check of the forked chain instead.

Trail of Bits 40 Treehouse tETH Security Assessment
CONFIDENTIAL

D. Automated Static Analysis

This appendix describes the setup of the automated analysis tools used during this audit
for the off-chain components.

Though static analysis tools frequently report false positives, they detect certain categories
of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,
with essentially perfect precision. We recommend periodically running these static analysis
tools and reviewing their findings.

Semgrep

To install Semgrep, we used pip by running python3 -m pip install semgrep.

To run Semgrep on the codebase, we ran the following command in the root directory of
the project (running multiple predefined rules simultaneously by providing multiple
--config arguments):

semgrep --config "p/trailofbits" --config "p/ci" --config "p/python”
--config "p/security-audit" --metrics=off

We also used semgrep-rules-manager to fetch and run other third-party rules.

We recommend integrating Semgrep into the project's CI/CD pipeline. To thoroughly
understand the Semgrep tool, refer to the Trail of Bits Testing Handbook, where we aim to
streamline the use of Semgrep and improve security testing effectiveness. Also, consider
doing the following:

e Limit results to error severity only by using the --severity ERROR flag.
e Focus first on rules with high confidence and medium- or high-impact metadata.

e Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
Viewer for Visual Studio Code extension. This will make it easier to review the
analysis results and drill down into specific issues to understand their impact and
severity.

CodeQL
We installed CodeQL by following CodeQL's installation guide.

After installing CodeQL, we ran the following command to create the project database for
the Treehouse offchain repository:

codeql database create treehouse.db --language=python

Trail of Bits 41 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/iosifache/semgrep-rules-manager/
https://appsec.guide/docs/static-analysis/semgrep/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

We then ran the following command to query the database:

codeql database analyze treehouse.db --format=sarif-latest
--output=codeql_res.sarif -- python-lgtm-full
python-security-and-quality python-security-experimental

For more information about CodeQL, refer to the CodeQL chapter of the Trail of Bits
Testing Handbook.

Trail of Bits 42 Treehouse tETH Security Assessment
CONFIDENTIAL

https://appsec.guide/docs/static-analysis/codeql/
https://appsec.guide/docs/static-analysis/codeql/

E. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On August 9, 2024, Trail of Bits reviewed the fixes and mitigations implemented by the
Treehouse team for the off-chain issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

While the team provided commentary as to the status of each issue, they did not provide
specific references to independent commits or pull requests that address each finding.
Instead, they provided us with a new version of the tETH-offchain repository, identified
by the hash c6abal1a46b28a52f69c98ddb62e8853dBbcc23c. This new version of the
codebase is a major rewrite of the off-chain code, and as such, the affected code may not
be present in its original form on the newer codebase. Instead of a direct fix review, we
sought to see, within reason and time constraints, if the same problems that were reported
originally are present in the new codebase.

On August 23, 2024, Trail of Bits reviewed an additional fix for issue TOB-TETH-7 contained
in commit 84ef318974effOc2fBe1c29d0b74416233ae361a.

On August 27, 2024, Trail of Bits reviewed an additional commit
(co0db745fdac4dbd8f07635026Tfd193cc1abaft5c) that includes the fixes for the
on-chain issue TOB-TETH-3.

In summary, of the 9 off issues described in this report, Treehouse has resolved 4 issues,
and has not resolved the remaining 5 issues. For additional information, please see the
Detailed Fix Review Results below.

ID Title Status
1 Incorrect accounting logic for stETH deposits Unresolved
2 Chainlink oracles could return stale price data Unresolved
3 Users can redeem tETH tokens to iETH Resolved
4 Secrets checked into source code Unresolved
5 Use of outdated libraries Unresolved
Trail of Bits 43 Treehouse tETH Security Assessment

CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/compare/2539d30504aec46d2a753fac2c18a3872691507a...c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c

6 Potential code execution through deserialization Resolved

7 Overlapping and non-exhaustive conditions while analyzing cases Resolved
8 Potentially duplicate event fetching Unresolved
9 Potentially misleading order comparison Resolved

Detailed Fix Review Results

TOB-TETH-1: Incorrect accounting logic for stETH deposits
Unresolved in commit c60db74. The client provided the following context for not fixing this
issue:

TOB-TETH-1: After extensive discussion, it is concluded that this issue results from a
rounding error on Lido's end and is not economically exploitable. The discrepancy is
minimal, affecting the vault by at most 2 wei of wstETH per deposit, regardless of the
deposit size. For instance, 100,000 deposits of 1 stETH each would lead to a shortfall of
only 0.000000000000200000 wstETH, which is negligible. This issue will be acknowledged
as "will not fix" since it does not pose any significant economic risk or exploitation
potential.

TOB-TETH-2: Chainlink oracles could return stale price data
Unresolved in commit ce@db74. The client provided the following context for not fixing this
issue:

TOB-TETH-2: We primarily use Chainlink oracles to price our vault NAV during
accounting. Many protocols use oracles directly without implementing staleness checks.
We can address this issue off-chain by performing our own staleness checks before
running our accounting processes. This issue will be acknowledged as "will not fix," but
we will note that staleness checks will likely be performed off-chain before accounting.

TOB-TETH-3: Users can redeem tETH tokens to iETH

Resolved in commit c08db74. The implementation was updated to override the _deposit
and _withdraw functions of the inherited ERC4626 contract. Therefore, the exposed
redeem and withdraw functions (from the inherited ERC4626 contract) can no longer be
called by any account, only by the account with the Minter role. Additionally, this limits the
exposed mint function to only be callable by an account with the Minter role.

TOB-TETH-4: Secrets checked into source code
Unresolved in commit c6a6al1. While Treehouse has done a first step towards resolving
this issue and refactored some of the hard-coded secrets into configuration variables, we

Trail of Bits 44 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

still find valid, unrevoked secrets present in the repository (for instance, several node URLs
and an Etherscan API key on file
config/thirdparty_config/strat_config_thirdparty.yml, or NodeReal keys
hardcoded in tests), as well as committed on the repository’s Git history (such as an Infura
API key, 86c..b5f).

The team has noted through comments in the codebase that they intend to move these
secrets to a safer place (like a secrets vault) before moving to production. This is, however,
not yet implemented on the codebase as of commit d8@cBa9, and we did not observe any
work towards integration with a secrets vault solution in the codebase.

TOB-TETH-5: Use of outdated libraries

Unresolved in commit c6a6al1. Treehouse has only updated one dependency in the
codebase, urllib3. We do not observe any new processes or workflows in the repository
for becoming aware of vulnerable dependencies nor for taking actions to update them.

The client provided the following context for this finding's fix status:

TOB-TETH-5: We commonly use stable versions of packages, which are not necessarily the
latest versions. It is impractical to mandate the use of the latest versions for all
dependencies. Therefore, this recommendation is not feasible. No action needed

TOB-TETH-6: Potential code execution through deserialization
Resolved in commit c6abal1. The codebase has been refactored and no longer uses pickle
files for any of its functionality.

TOB-TETH-7: Overlapping and non-exhaustive conditions while analyzing cases
Resolved in commit 84ef318. The code shown in the finding has been reworked and
rewritten, and its logic now lives as function analyze_metrics in file
src/state_handler/analyze_state.py. The original fix reviewed in commit c6a6alT
was still affected by both logic errors explained in the finding, and sample test cases are
provided in appendix G to more easily showcase said issues; however this has now been
resolved in commit 84ef318.

It is worth noting that some of the new test cases introduced to test this functionality in
function test_analyze_metrics_higher from file
tests/state_handler/test_analyze_state.py misuse the analyze_metrics
function by providing a threshold value higher than the upper bound on the
higher_better case, while the function expects a threshold value lower than the lower
bound. This expected usage is exemplified by the arithmetic relation between the
arguments passed by codebase, e.g. while calculating the Lido stake rate. The new test
functions also do not exercise all edge cases. The expected usage and the relationship
between threshold, lower and upper bound values has also not been documented in the
codebase.

Trail of Bits 45 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a

The client provided the following context for this finding's fix status:

Since we are upgrading our code base for v2 vault, many of the test cases may not be

applicable anymore after some core functions are changed. The issue related with test
cases are acknowledged and we will be fixing all the test cases together after we finish
code updates for v2 vault.

TOB-TETH-8: Potentially duplicate event fetching

Unresolved in commit c6a6al1. The code, now living on function get_pool_events in file
utils/web3_func.py, continues to exhibit the same issue of overlapping range
generation, which might result in duplicated events. A sample test case is provided in
appendix G to more easily showcase the issue.

The client provided the following context for this finding's fix status:

TOB-TETH-8: This issue is deemed unlikely to affect our implementation as we are
querying for a single event type. The possibility of duplicating a single event is negligible.
The overall code structure has been improved, and the current approach is considered
sufficient for our needs.

TOB-TETH-9: Potentially misleading order comparison
Resolved in commit c6abal1. The compare_order function now logs an error and returns
false if an unsimulated order is detected.

Trail of Bits 46 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

F. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been

sufficiently addressed.

Fix Status
Status
Undetermined

I Unresolved
Partially Resolved

Resolved

Trail of Bits
CONFIDENTIAL

Description

The status of the issue was not determined during this engagement.
The issue persists and has not been resolved.

The issue persists but has been partially resolved.

The issue has been sufficiently resolved.

47 Treehouse tETH Security Assessment

G. Fix Review Test Cases

The following test functions exercise the functionality provided by the analyze_metrics
function, in both “lower_better” and “higher_better” scenarios, to cover the function
edge cases. The test failures observed by running these tests against the codebase as of
commit c6a6all are included as figure G.2.

def test_analyze_metrics_lower(self) -> None:
"""Test the "lower_better" case of the analyze_metrics function.

This assumes the following range setup:

Lower Upper Threshold
20 60 100
cases = |

(106, "MODERATE_below_lower", "below lower bound")

(20, "BAU_within_bounds", "exactly lower bound"),

(40, "BAU_within_bounds", "within [L, U] bounds")

(60, "BAU_within_bounds", "exactly upper bound"),

(80, "MODERATE_above_upper", "above upper bound, under threshold"),
(100, "EXTREME_above_thres", "exactly threshold")

(120, "EXTREME_above_thres", "above threshold")

for (value, expected_result, msg) in cases:
with self.subTest(msg=msg, value=value, expected_result=expected_result):
result = analyze_metrics("Metric", value, 60, 20, 100, "lower_better")
self.assertEqual(result, expected_result)

def test_analyze_metrics_higher(self) -> None:
"""Test the "higher_better" case of the analyze_metrics function.

This assumes the following range setup:

Threshold Lower Upper
20 60 100
cases = |

(10, "EXTREME_below_thres", "below threshold"),

(20, "EXTREME_below_thres", "exactly threshold"),

(40, "EXTREME_below_lower", "below lower bound, greater than threshold"),
(60, "BAU_within_bounds", "exactly lower bound"),

(80, "BAU_within_bounds", "within [L, U] bounds")

(100, "BAU_within_bounds", "exactly upper bound")

(120, "MODERATE_above_upper", "above upper bound"),

for (value, expected_result, msg) in cases:
with self.subTest(msg=msg, value=value, expected_result=expected_result):

Trail of Bits 48 Treehouse tETH Security Assessment
CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

result = analyze_metrics("Metric", value, 100, 60, 20, "higher_better")
self.assertEqual(result, expected_result)

Figure G.1: Test functions for analyze_metrics

ERROR: test_analyze_metrics_lower (__main__.TestAnalyzeState) [exactly threshold] (value=160,
expected_result="'EXTREME_above_thres")
Test the "lower_better" case of the analyze_metrics function.
Traceback (most recent call last):
File "DIR/tests/state_handler/test_analyze_state.py", line 47, in test_analyze_metrics_lower
result = analyze_metrics("Metric", value, 60, 20, 100, "lower_better")
File "DIR/tests/state_handler/../../src/state_handler/analyze_state.py", line 136, in
analyze_metrics
raise Exception("Not found matched alert level.")
Exception: Not found matched alert level.

FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [below threshold] (value=10,
expected_result="'EXTREME_below_thres")
Test the "higher_better" case of the analyze_metrics function.
Traceback (most recent call last):
File "DIR/tests/state_handler/test_analyze_state.py"”, line 71, in test_analyze_metrics_higher
self.assertEqual(result, expected_result)
AssertionError: 'EXTREME_below_lower' != 'EXTREME_below_thres'
EXTREME _below_lower

AAAN A

EXTREME_below_thres

AAAN A

o+

FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [exactly threshold] (value=20,
expected_result="'EXTREME_below_thres")
Test the "higher_better" case of the analyze_metrics function.
Traceback (most recent call last):
File "DIR/tests/state_handler/test_analyze_state.py", line 71, in test_analyze_metrics_higher
self.assertEqual(result, expected_result)
AssertionError: 'EXTREME_below_lower' != 'EXTREME_below_thres'
EXTREME_below_lower

AAAN A

EXTREME_below_thres

AAAN A

D+ 0

Figure G.2: Test failures observed by running the tests in figure G.1

The following sample test function exercises the functionality provided by the
get_pool_events function. The test failure observed by running this test is included as
figure G.4.

def test_get_pool_events_no_duplicate(self) -> None:
events = get_pool_events(
"eth",
"@xae7ab96520de3a18e5e111b5eaab095312d7fe84",

Trail of Bits 49 Treehouse tETH Security Assessment
CONFIDENTIAL

20412190-49999,
20412190+49999,
"TokenRebased",
"https://eth-mainnet.nodereal.io/v1/REDACTED_SECRET",

)

tx_hashes = [event["transactionHash"] for event in events]

use a set to deduplicate events. If there are no repeated

events / tx hashes, both the set and the list should be the
same length

self.assertEqual(len(set(tx_hashes)), len(tx_hashes))

Figure G.3: Test function for get_pool_events

Traceback (most recent call last):
File "DIR/tests/utils/test_web3_func.py", line 35, in
test_get_pool_events_no_duplicate
self.assertEqual(len(set(tx_hashes)), len(tx_hashes))
AssertionError: 13 1= 14

Figure G.4: Test failure observed by running the test in figure G.3

Trail of Bits 50 Treehouse tETH Security Assessment
CONFIDENTIAL

