
 Treehouse tETH
 Security Assessment

 August 27, 2024

 Prepared for:

 Ben Loh
 Treehouse Finance

 Prepared by: Michael Colburn, Justin Jacob, Damilola Edwards, Emilio López and David
 Pokora

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 497 Carroll St., Space 71, Seventh Floor
 Brooklyn, NY 11215
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2024 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be business confidential information; it is
 licensed to Treehouse under the terms of the project statement of work and intended
 solely for internal use by Treehouse. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications, if published, is the Trail of Bits
 Publications page . Reports accessed through any source other than that page may have
 been modified and should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Project Summary 4
 Executive Summary 5
 Project Goals 8
 Project Targets 9
 Project Coverage 10
 Automated Testing 13

 Functional Invariants 13
 System Invariants 14

 Codebase Maturity Evaluation 15
 Summary of Findings 19
 Detailed Findings 20

 1. Incorrect accounting logic for stETH deposits 20
 2. Chainlink oracles could return stale price data 22
 3. Users can redeem tETH tokens to iETH 23
 4. Secrets checked into source code 25
 5. Use of outdated libraries 27
 6. Potential code execution through deserialization 28
 7. Overlapping and non-exhaustive conditions while analyzing cases 30
 8. Potentially duplicate event fetching 32
 9. Potentially misleading order comparison 34

 A. Vulnerability Categories 35
 B. Code Maturity Categories 37
 C. Code Quality Recommendations 39
 D. Automated Static Analysis 41
 E. Fix Review Results 43

 Detailed Fix Review Results 44
 F. Fix Review Status Categories 47
 G. Fix Review Test Cases 48

 Trail of Bits 3 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Project Summary

 Contact Information
 The following project manager was associated with this project:

 Mary O’Brien , Project Manager
 mary.obrien@trailofbits.com

 The following engineering directors were associated with this project:

 David Pokora , Engineering Director, Application Security
 david.pokora@trailofbits.com

 Josselin Feist , Engineering Director, Blockchain
 josselin.feist@trailofbits.com

 The following consultants were associated with this project:

 Michael Colburn , Consultant David Pokora , Consultant
 michael.colburn@trailofbits.com david.pokora@trailofbits.com

 Damilola Edwards , Consultant Justin Jacob , Consultant
 damilola.edwards@trailofbits.com justin.jacob@trailofbits.com

 Emilio López , Consultant
 emilio.lopez@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 July 8, 2024 Pre-project kickoff call

 July 18, 2024 Status update meeting #1

 July 29, 2024 Delivery of report draft

 July 29, 2024 Report readout meeting

 August 27, 2024 Delivery of report with fix review appendix

 Trail of Bits 4 Treehouse tETH Security Assessment
 CONFIDENTIAL

mailto:mary.obrien@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:damilola.edwards@trailofbits.com
mailto:justin.jacob@trailofbits.com
mailto:emilio.lopez@trailofbits.com

 Executive Summary

 Engagement Overview
 Treehouse engaged Trail of Bits to review the security of the tETH contracts and offchain
 code. tETH is a liquid restaking token that serves to converge the fragmented on-chain ETH
 interest rates market. Holders of tETH earn yield through interest rate arbitrage while still
 being able to use tETH for DeFi activities.

 A team of two consultants from the blockchain team conducted a review focusing on the
 smart contracts from July 10 to July 23, 2024, for a total of two engineer-weeks of effort.
 Another team of two consultants from the appsec team conducted a separate review in
 parallel focusing on the off-chain components from July 10 to July 26, for a total of two
 engineer-weeks effort. Our testing efforts focused the identification of flaws that could
 result in a compromise of confidentiality, integrity, or availability of the target systems. We
 conducted this audit with full knowledge of the system . With full access to source code and
 documentation, we performed static and dynamic testing of the smart contracts and
 off-chain components, using automated and manual processes. The final off-chain code
 was delivered a few days after the review started, on July 15. Towards the end of the smart
 contract review period the Treehouse team provided additional code for review at commits
 728d47 and a930e0 which was reviewed on a best effort basis.

 Observations and Impact
 The tETH smart contracts relies on privileged actors to manually perform necessary
 operations; for example, operations related to PnL distribution, funding the redemption
 contract to enable user withdrawals, updates to state variables that directly impact users’
 solvency and funds, investments into and divestments from strategies. Additionally we
 identified two issues related with integration with external protocols (TOB-TETH-1) and
 (TOB-TETH-2). It is therefore important to highlight the need for a careful review of the
 documentation and guidelines of protocols the system interacts with to ensure that the
 integrations are done in line with the recommended best practices. Treehouse should also
 pay attention to the security of the privileged actor accounts. The Treehouse team
 mentioned they plan to use a Gnosis multi-signature wallet for this purpose, but the
 support for this is not yet implemented in the offchain codebase.

 Recommendations
 Based on the codebase maturity evaluation and findings identified during the security
 review, Trail of Bits recommends that the Treehouse team take the following steps prior to
 achieving deployment:

 ● Remediate the findings disclosed in this report. These findings should be
 addressed as part of a direct remediation or as part of any refactor that may occur
 when addressing other recommendations..

 Trail of Bits 5 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/0xhypn/tETH-protocol/pull/53/commits/728d4748f8ba2316e698a99d266bbef0b33323dc
https://github.com/0xhypn/tETH-protocol/pull/53/commits/a930e0825b8a9d9acfa5f579fbdfaff91edd507b

 ● Identify all system properties that are expected to hold and use dynamic
 end-to-end fuzz testing to validate those system properties.

 ● Implement a secure way to sign transactions on the off-chain component, that
 preferably holds the keys on one or more secure hardware devices and
 requires multi-party approval for a transaction to be processed. Currently, the
 system only supports signing transactions with a hardcoded EOA wallet that is
 embedded in the codebase, and the contracts are not controlled through a
 multi-signature wallet. The Treehouse team mentioned they will be using
 multi-signatory with multi-party approval for the transaction to be processed

 ● Significantly improve testing of off-chain components. Currently the off-chain
 codebase does not have unit tests and test automation, and relies on a manual
 scenario simulation script for manual testing.

 ● Implement automated CI/CD processes for the off-chain components. These
 should include automated testing, dependency vulnerability checks (e.g. via
 Dependabot), source code static analysis (e.g. via Semgrep or CodeQL) and pull
 request review and approval criteria.

 ● Determine if there is a risk in interacting with public RPC providers in the
 off-chain codebase and adjust accordingly. Relying on a single external RPC
 provider as a source of truth could lead to a skewed view of the protocol state if the
 provider is compromised or their nodes fork off the canonical chain. Sending
 transactions through the public mempool could also allow for third-parties to
 perform, for example, sandwich attacks. Consider performing RPC calls to one or
 more private or self hosted nodes in parallel and compare their results. Evaluate
 using a private mempool service to submit transactions to the chain.

 ● Use integer values for off-chain arithmetic. Floating point numbers may lose
 precision in counterintuitive ways. For financial applications in which precision is
 important, fixed-point math using big integers is a well-established best practice.
 Python integers are of arbitrary length out of the box.

 Trail of Bits 6 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Finding Severities and Categories
 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 1

 Medium 0

 Low 2

 Informational 5

 Undetermined 1

 CATEGORY BREAKDOWN

 Category Count

 Access Controls 1

 Data Exposure 1

 Data Validation 6

 Patching 1

 Trail of Bits 7 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Project Goals

 The engagement was scoped to provide a security assessment of the tETH protocol.
 Specifically, we sought to answer the following non-exhaustive list of questions:

 ● Could an attacker steal funds from the system?

 ● Are appropriate access controls in place?

 ● Are the arithmetic calculations performed during token minting and redeeming
 operations correct?

 ● Is the protocol vulnerable to denial-of-service (DoS) attacks?

 ● Is the arithmetic for handling various types of collateral performed correctly?

 ● Are user-provided parameters sufficiently validated?

 ● Are there any economic attack vectors in the system?

 ● Does the protocol convert tokens to and from shares correctly?

 ● Is the share price prone to manipulation?

 ● Could the use of low-level calls in the codebase cause any problems?

 ● Could a user’s funds become stuck in the system?

 ● Do the off-chain components query the chain state adequately?

 ● Are different chain states sufficiently validated in the off-chain components?

 Trail of Bits 8 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Project Targets

 The engagement involved a review and testing of the targets listed below.

 tETH protocol
 Repository https://github.com/treehouse-gaia/tETH-protocol

 Version 02c3ab1fafa7610ba43fc3cc905ccad504b39cf3

 Type Solidity

 Platform EVM

 tETH o�chain
 Repository https://github.com/treehouse-gaia/tETH-offchain

 Version 2539d30504aec46d2a753fac2c18a3872691507a

 Type Python

 Platform Linux

 Trail of Bits 9 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/tree/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3
https://github.com/treehouse-gaia/tETH-offchain/tree/2539d30504aec46d2a753fac2c18a3872691507a

 Project Coverage

 This section provides an overview of the analysis coverage of the review, as determined by
 our high-level engagement goals. Our approaches included the following:

 ● Deposits : The TreehouseRouter contract serves as the gateway for deposits into
 the protocol, all deposited assets are sent to the vault and the depositor receives
 tETH token in return. The contracts relevant to the deposit execution flow include
 the TreehouseRouter , Vault , iETH and tETH contracts. We conducted the
 following manual and automated reviews of these contracts:

 ○ We reviewed the conversion of assets to shares to ensure they were
 performed correctly

 ○ We reviewed the use of access control modifiers to ensure that necessary
 access controls are in place for privileged operations, this led to the
 identification of issue (TOB-TETH-3) which allows users to directly convert
 tETH tokens for iETH and potentially introducing errors in PnL accounting.

 ○ We reviewed the deposit flow to ensure that users cannot lose funds through
 theft or unintended locks.

 ○ We reviewed the integration and interactions with external protocols to
 ensure that the assumptions made do not introduce flaws in the system. Two
 issues were identified in this regard (TOB-TETH-1) and (TOB-TETH-2).

 ● Redemption: Redemption requests are handled via the TreehouseRedemption
 contract, after the minimum waiting period is passed, users can then proceed to
 finalize the withdrawal process, at this point, the underlying ETH/WETH is
 transferred to the user. We conducted a the following manual and automated
 reviews of the contracts relevant to the redemption flow:

 ○ We reviewed the access controls on the functions to ensure that only
 privileged actors could update critical system values

 ○ We reviewed the redemption finalization flow to ensure that waiting periods
 could not be bypassed

 ○ We reviewed the state changes that occur during the creation of redemption
 requests, cancellations and finalizations to ensure consistency and the
 possibility of re-entrances and replay attacks

 ● Accounting : The accounting mechanism employed by the tETH protocol involves
 the use of two separate tokens, tETH a yield-bearing ERC-4626 vault token which

 Trail of Bits 10 Treehouse tETH Security Assessment
 CONFIDENTIAL

 represent shares and iETH an internal accounting unit representing the total value
 in the vault and used for PnL calculation after harvest from strategies. We
 conducted a the following manual and automated reviews of the contracts relevant
 to the internal accounting:

 ○ We reviewed the contract for flaws that would allow users to manipulate
 share prices.

 ○ We reviewed the interest accrual process to determine whether it is
 vulnerable to front-running or sandwich attacks.

 ○ We reviewed the arithmetic that is performed and the state changes that
 occur during deposits, redemption requests, cancellations and finalizations
 to identify any edge cases that may result in undefined behavior.

 ● Rate providers: The system relies on the rate provider contracts to query price
 feeds and asset values, we conducted a manual review on these contracts to ensure
 proper integration and data staleness checks, we found one issue related to this
 (TOB-TETH-2)

 ● Strategies : The strategy folder consists of multiple contracts relating to
 strategies and actions, we conducted a manual review on these components to
 ensure general correctness and that the functions have the correct access controls
 in place.

 ● Off-chain scripts: The system uses external programs that query the chain state
 through a RPC provider, and can suggest and eventually execute rebalancing
 operations to maintain the protocol strategy in a healthy state. We performed
 automated and manual review of the code to check that its interaction with the
 chain is correct and that it handles multiple states adequately. We identified several
 issues in this component, including ones related to maintainability (TOB-TETH-4 ,
 TOB-TETH-5), unsafe use of language functionality (TOB-TETH-6), the interaction with
 the chain (TOB-TETH-8), and state analysis (TOB-TETH-7 , TOB-TETH-9).

 Coverage Limitations
 Because of the time-boxed nature of testing work, it is common to encounter coverage
 limitations. The following list outlines the coverage limitations of the engagement and
 indicates system elements that may warrant further review:

 ● We did not extensively search for front-running vulnerabilities.

 ● We did not review the high-level economic incentives and disincentives imposed by
 the system.

 Trail of Bits 11 Treehouse tETH Security Assessment
 CONFIDENTIAL

 ● We did not review the off-chain arithmetic in depth, nor the associated strategy
 logic, parameters, and its soundness in the context of the system. In particular, we
 did not analyze the impact of performing floating-point arithmetic and the risk of
 rounding errors it entails.

 ● In addition, the report does not include an integration found post review: the
 TreehouseRedemption contract calls the WETH.withdraw function, but the
 redemption contract is lacking a fallback or receive function. As a result WETH's
 transfer will revert.

 Trail of Bits 12 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Automated Testing

 Trail of Bits uses automated techniques to extensively test the security properties of
 software. We use both open-source static analysis and fuzzing utilities, along with tools
 developed in house, to perform automated testing of source code and compiled software.

 Test Harness Configuration
 We used the following to ols in the automated testing phase of this project:

 ● Slither : A static analysis framework that can statically verify algebraic relationships
 between Solidity variables

 ● Medusa : A cross-platform go-ethereum -based smart contract fuzzer inspired by
 Echidna

 ● Semgrep : An open-source static analysis tool for finding bugs and enforcing code
 standards when editing or committing code and during build time

 ● CodeQL : A code analysis engine developed by GitHub to automate security checks

 Test Results
 The tables below summarizes the type, property conditions and result of each invariants
 fuzzed on the smart contract codebase. We ran the fuzzer both locally and on the cloud.

 Functional Invariants
 We ran the following invariants using Medusa to test functions in the TreehouseRouter
 and TreehouseRedemption contracts to ensure that they behave as expected. They
 include checks of preconditions and postconditions expected to hold in the system.

 ID Property Result

 F-TETH-1 stETH/wsETH/ETH balance of depositor should always
 decrease after a deposit

 Passed

 F-TETH-2 Vault’s stETH/wsETH/ETH balance should always increase
 after a deposit

 Passed

 F-TETH-3 Total supply of tETH should always increase after deposits Passed

 F-TETH-5 Depositor’s balance of tETH should always increase after a
 deposit

 Passed

 Trail of Bits 13 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/crytic/slither
https://github.com/crytic/medusa
https://github.com/ethereum/go-ethereum/
https://github.com/crytic/echidna
https://github.com/returntocorp/semgrep
https://codeql.github.com/

 F-TETH-6 Total supply of tETH should always decrease after redeem Passed

 F-TETH-7 User’s balance of tETH should always decrease after
 redeem

 Passed

 F-TETH-8 cancelRedeem should always increase the user’s tETH
 balance

 Passed

 F-TETH-9 finalizeRedeem should always increase user’s ETH/WETH
 balance

 Passed

 F-TETH-10 finalizeRedeem should always reduce vault’s ETH/WETH
 balance

 Passed

 System Invariants
 Using medusa, we also added system invariants that check the relationship between global
 system states. These invariants test the relationships between variables in the contract.
 Unlike functional invariants, these invariants should hold true regardless of the functions
 that are executed.

 ID Property Result

 S-TETH-1 Total ETH + WETH balance in the vault should never
 exceed deposit cap

 Passed

 S-TETH-2 Total supply of IETH should equal total asset value in vault Failed

 S-TETH-3 Redemption timelocks should not be bypassable Passed

 S-TETH-4 User with no access to ETH/WETH/wsETH should have no
 tETH shares

 Passed

 S-TETH-5 Users ETH/WETH balance should never exceed provided
 amount

 Passed

 Trail of Bits 14 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Codebase Maturity Evaluation

 Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
 the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
 identified here often stem from root causes within the software development life cycle that
 should be addressed through standardization measures (e.g., the use of common libraries,
 functions, or frameworks) or training and awareness programs.

 Category Summary Result

 Arithmetic The protocol uses Solidity 0.8.24 which has overflow
 protection by default for arithmetic operations, and most
 of the operations are documented with inline
 documentation. Asset calculations rely on the
 assumption that the dollar value of stETH would always
 be equal to ETH, this could potentially introduce
 accounting issues if stETH depegs.

 The offchain code performs arithmetic using floating
 point numbers, which may introduce precision errors.

 Satisfactory

 Auditing All functions involved in critical state-changing operations
 emit events. The codebase uses a wide variety of
 informative events and error messages, which are
 emitted at appropriate locations.

 The offchain components provide sufficient logs for
 tracking their internal state.

 Satisfactory

 Authentication /
 Access Controls

 Most functions within the contracts are restricted by
 access controls in place, permitting only privileged actors
 to execute them. Users have limited control, primarily
 restricted to deposits, creating and canceling redemption
 requests, and finalizing redemptions. However, an issue
 was identified due to the lack of access control on an
 implicitly inherited function in the tETH contract
 (TOB-TETH-3). Given the presence of multiple privileged
 actors performing different roles, it would be beneficial
 to document these roles and the actions they are
 authorized to perform.

 Moderate

 Complexity
 Management

 The smart contract codebase contains a significant
 number of contracts, however they are easy enough to

 Moderate

 Trail of Bits 15 Treehouse tETH Security Assessment
 CONFIDENTIAL

 reason through and most of the complexity is left to be
 handled by the strategy manager via the off-chain
 components. Each contract in the protocol has a clear
 purpose, and there are no signs of excessive inheritance
 or high cyclomatic complexity. All functions are concise,
 are well documented, have a clear purpose, and are
 appropriately tested.

 The off-chain codebase is also generally modularized and
 separated into functions; however it contains multiple
 instances of code duplication, commented-out code, and
 special-casing, which reduce maintainability, readability,
 and hamper reasoning about the code.

 Configuration As the system is in development, a production
 configuration is not yet available. The current
 development configuration contains hard-coded keys,
 which are not suitable for a production launch. The team
 expressed that the off-chain component will gain support
 for managing funds through a multi-signature setup
 before launch.

 Not
 Considered

 Cryptography
 and Key
 Management

 The system does not perform cryptographic operations
 directly on the off-chain component, and relies on
 third-party libraries such as web3.py to perform
 operations such as transaction signing. However,
 multiple API and wallet keys are currently hardcoded in
 the code or committed as part of the repository. There is
 no implemented support for safe runtime provisioning of
 secrets, e.g. via a secrets vault or password manager.

 Weak

 Data Handling The system generally validates the data it operates on.
 We did however find some issues related to data
 validation in the on-chain (TOB-TETH-2) and off-chain
 (TOB-TETH-6 , TOB-TETH-7) components.

 Moderate

 Decentralization The system's operations depend on certain privileged
 actors manually executing essential tasks (via off-chain
 executions). These tasks include operations related to
 profit and loss distribution, user withdrawals, updating
 state variables affecting user solvency and funds, and
 managing investments and divestments. Due to the
 extensible nature of the portfolio management system,
 privileged actors can perform arbitrary actions.

 Weak

 Trail of Bits 16 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Additionally, the Rescuable contract includes a provision
 that allows the retrieval of any uninvested funds from the
 Vault.

 Documentation The code is generally well commented using natspec
 style. The supplied documentation regarding the system
 design, architecture and descriptions of the onchain and
 offchain components were generally sufficient.

 Strong

 Low-Level
 Manipulation

 The use of double delegatecall in the strategy flow raises
 concerns, as it could potentially lead to unintended
 consequences, such as inadvertently corrupting storage
 when more advanced strategies are developed. It is
 advisable to establish guidelines for writing delegate calls
 to prevent such issues. Additionally, the use of assembly
 is currently limited to checking the return value of
 delegate calls.

 Moderate

 Maintenance The off-chain code is organized into logical modules;
 however, duplicated and commented-out code reduce
 readability and hinder maintainability. The lack of unit
 tests also make it difficult to introduce changes to the
 system with confidence that they do not include
 regressions or unexpected changes in behavior. The
 system could also benefit from the use of tools such as
 Dependabot in CI to automatically keep dependencies up
 to date in the repository, as well as automated CI/CD
 workflows to execute tests, perform static analysis and
 enforce a coding style.

 Weak

 Memory Safety
 and Error
 Handling

 The off-chain components are built using Python, which
 is memory safe. Errors are generally checked and
 handled appropriately.

 Satisfactory

 Testing and
 Verification

 The smart contract codebase contains several unit and
 integration tests, these tests appear to cover most
 common use cases of the protocol and test a fair number
 of potential reverts or other scenarios outside of the
 “happy path.”
 However, there is no targeted fuzz testing of arithmetic
 operations, invariants, or function properties.
 Furthermore, there is no mutation testing.

 These methodologies can expose unforeseen edge cases

 Moderate

 Trail of Bits 17 Treehouse tETH Security Assessment
 CONFIDENTIAL

 or anomalies that regular testing might miss. Fuzzing
 involves testing with random data inputs to trigger
 unhandled exceptions or crashes, while mutation testing,
 a method of code quality validation, alters the software
 code in small ways to assess whether the test cases can
 distinguish the original code from the mutated one.

 These can help ensure the resistance of the application
 against potential unusual inputs or behaviors.

 The off-chain component is currently lacking unit testing.
 While there is a “stress test” script that works as a sort of
 fuzz test, fuzzing specific functionality could also prove
 beneficial.

 Transaction
 Ordering

 Yield aggregator protocols in general are vulnerable to
 front-running issues especially during profit harvesting;
 the codebase should undergo a more in-depth review to
 find these vulnerabilities.

 Further
 Investigation
 Required

 Trail of Bits 18 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Incorrect accounting logic for stETH deposits Data Validation Low

 2 Chainlink oracles could return stale price data Data Validation Informational

 3 Users can redeem tETH tokens to iETH Access Controls Informational

 4 Secrets checked into source code Data Exposure Low

 5 Use of outdated libraries Patching Informational

 6 Potential code execution through deserialization Data Validation High

 7 Overlapping and non-exhaustive conditions while
 analyzing cases

 Data Validation Undetermined

 8 Potentially duplicate event fetching Data Validation Informational

 9 Potentially misleading order comparison Data Validation Informational

 Trail of Bits 19 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Detailed Findings

 1. Incorrect accounting logic for stETH deposits

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-TETH-1

 Target: contracts/TreehouseRouter.sol,
 contracts/periphery/Converter.sol

 Description
 An edge case in the way stETH token transfers work may result in a small wei discrepancy
 when depositing tokens via the TreehouseRouter contract or when converting stETH via
 the Converter contract.

 stETH is a rebasing token that updates daily to account for staking yield. To support this
 behavior, the stETH contract tracks each user's shares of the overall pool of ether, which is
 used to determine their balance of stETH tokens. When transferring tokens, the value is
 first converted to shares, and it is these shares that are actually transferred from one
 address to another. Converting between tokens and shares requires integer division that
 may result in slightly fewer stETH tokens being transferred than expected .

 The TreehouseRouter contract’s deposit function considers the ether value of the
 deposited stETH to correspond to the amount value passed as a parameter. As a result, the
 contract may then mint slightly more iETH tokens to the caller than they actually deposited.
 The maximum size of this discrepancy is expected to grow over time as Lido continues to
 grow and accrue staking rewards.

 77 function deposit (address _asset , uint256 _amount) public nonReentrant
 whenNotPaused {
 78 if (IVault(VAULT).isAllowableAsset(_asset) == false) revert
 NotAllowableAsset();
 79 uint _valueInEth ;
 80
 81 if (_asset == stETH) {
 82 _valueInEth = _amount;
 83
 84 IERC20(stETH).safeTransferFrom(msg.sender , address (this), _amount);
 85 uint wstethAmount = IwstETH(payable (wstETH)).wrap(_amount);
 86 IERC20(wstETH).transfer(VAULT, wstethAmount);
 87 } else if (_asset == wstETH) {
 88 _valueInEth = IwstETH(payable (wstETH)).getStETHByWstETH(_amount);

 Trail of Bits 20 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://docs.lido.fi/guides/lido-tokens-integration-guide/#1-2-wei-corner-case

 89
 90 IERC20(wstETH).safeTransferFrom(msg.sender , VAULT, _amount);
 91 } else {
 92 _valueInEth = _getDepositInEth(_asset, _amount);
 93 IERC20(_asset).safeTransferFrom(msg.sender , VAULT, _amount);
 94 }
 95
 96 _checkEthCap(_valueInEth);
 97 uint _shares = _mintAndStake(_valueInEth);
 98 emit Deposited(_asset, _amount, _valueInEth, _shares);
 99 }

 Figure 1.1: The deposit function from the TreehouseRouter contract
 (tETH-protocol/contracts/TreehouseRouter.sol#L77–L99)

 Exploit Scenario
 Many users deposit stETH into the protocol which results in many instances of small
 amounts of excess iETH being minted. Over time this tracking error may become large
 enough to have a noticeable impact on PnL accounting or other unexpected side effects.

 Recommendations
 Short term, snapshot the contract's stETH balance before and after the
 safeTransferFrom call and set _valueInEth and the value passed to wrap to the
 difference in the balance to accurately reflect the amount of stETH that was actually taken
 from the caller.

 Long term, carefully review the Lido integration documentation and ensure all known edge
 cases are accounted for when designing new features.

 References
 ● Lido tokens integration guide

 Trail of Bits 21 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L77-L99
https://docs.lido.fi/guides/lido-tokens-integration-guide/

 2. Chainlink oracles could return stale price data

 Severity: Informational Difficulty: High

 Type: Data Validation Finding ID: TOB-TETH-2

 Target: contracts/rate-providers/ChainlinkRateProvider.sol

 Description
 The latestRoundData() function from Chainlink oracles returns five values: roundId ,
 answer , startedAt , updatedAt , and answeredInRound . The ChainlinkRateProvider
 contract reads only the answer value and discards the rest. This can cause outdated prices
 to be used for token conversions.

 45 function getRate () external view override returns (uint256) {
 46 (, int256 price , , ,) = pricefeed.latestRoundData();
 47 require (price > 0 , 'Invalid price rate response');
 48 return uint256 (price) * _scalingFactor;
 49 }

 Figure 2.1: All returned data other than the answer value is ignored during the call to a
 Chainlink feed’s latestRoundData method.

 (tETH-protocol/contracts/rate-providers/ChainlinkRateProvider.sol#L45–L49
)

 According to the Chainlink documentation , if the latestRoundData() function is used,
 the updatedAt value should be checked to ensure that the returned value is recent
 enough for the application.

 Recommendations
 Short term, make sure that the oracle queries check for up-to-date data and revert or
 return a sentinel value (e.g., 0) to indicate stale data.

 Long term, review the documentation for Chainlink and other oracle integrations to ensure
 that all of the security requirements are met to avoid potential issues, and add tests that
 take these possible situations into account.

 Trail of Bits 22 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/rate-providers/ChainlinkRateProvider.sol#L45-L49
https://docs.chain.link/data-feeds#check-the-timestamp-of-the-latest-answer

 3. Users can redeem tETH tokens to iETH

 Severity: Informational Difficulty: Low

 Type: Access Controls Finding ID: TOB-TETH-3

 Target: Contracts/tETH.sol

 Description
 The tETH contract exposes the withdraw and redeem functions from the inherited
 ERC4626 token contract, this allows any user to redeem their tETH tokens for iETH.

 iETH tokens are minted purely for accounting purposes, during deposits, the iETH token is
 minted equivalent to the ETH value of the amount of asset deposited and burned during
 the finalization of redemption. The iETH token is also used in estimating total profit or loss
 accrued over a period of time and then is rebased to maintain a 1:1 peg between tETH and
 ETH. Ideally the total supply of iETH should be held in the tETH contract since it represents
 the total share value.

 However, due to the absence of access controls on the inherited withdraw and redeem
 functions in the tETH contract, users can directly convert their tETH tokens to iETH,
 although iETH cannot be directly converted to ETH within the protocol, this action could
 lead to unintended side effects like potentially introducing accounting miscalculations
 (depending on how pnl accounting is performed on the offchain side) or possible
 frontrunning/backrunning attacks.

 210 function redeem (uint256 shares , address receiver , address owner) public
 virtual returns (uint256) {
 211 uint256 maxShares = maxRedeem(owner);
 212 if (shares > maxShares) {
 213 revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
 214 }
 215
 216 uint256 assets = previewRedeem(shares);
 217 _withdraw(_msgSender(), receiver, owner, assets, shares);
 218
 219 return assets;
 220 }

 Figure 3.1: Invokable redeem function in the OZ ERC4626 token contract implementation.

 Trail of Bits 23 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Recommendations
 Short term, consider adding access controls on the inherited redeem and withdraw
 functions within the tETH contract in order to revoke direct access or allow only specific
 users access.

 Long term, carefully review all public and external functions within imported
 libraries/dependencies and add proper access controls on functions that should not be
 invoked directly by users.

 Trail of Bits 24 Treehouse tETH Security Assessment
 CONFIDENTIAL

 4. Secrets checked into source code

 Severity: Low Difficulty: High

 Type: Data Exposure Finding ID: TOB-TETH-4

 Target: tETH-offchain/utils/web3_func.py ,
 tETH-offchain/src/env_handler/fork_blockchain.py ,
 tETH-offchain/config/thirdparty_config/strat_config_thirdparty.yml ,
 tETH-offchain/config/deploy_config/strat_config_deploy.yml

 Description
 Several secrets, including API keys and Ethereum private keys, are checked into the source
 code repository and present in the Git history. If attackers have access to the application
 source code, they would have access to said secrets. Additionally, checking the shared
 secret into the source code repository gives all employees and contractors with access to
 the repository access to the secrets. Secret values such as API keys and Ethereum private
 keys should never be stored in plaintext in source code repositories, as they can become
 valuable tools to attackers if the repository is compromised. The figures below show a few
 samples of the identified secrets, but these are not an exhaustive list.

 "eth" :
 f "https://api.etherscan.io/api?module=contract&action=getabi&address= { cid } &apikey= RE
 DACTED_KEY " ,

 Figure 4.1: Example Etherscan API key present in the repository
 (tETH-offchain/utils/web3_func.py)

 DEFAULT_RPC_URL = "https://mainnet.infura.io/v3/ REDACTED_KEY "

 Figure 4.2: Example Infura key present in the codebase
 (tETH-offchain/src/env_handler/fork_blockchain.py)

 DEPLOYER_PRIVATE_KEY: '0xREDACTED'
 PREFERRED_NODE_URL: https://rpc.buildbear.io/ REDACTED

 Figure 4.3: Example private key and Buildbear key
 (tETH-offchain/config/deploy_config/strat_config_deploy.yml)

 The severity has been marked as low, as the system is not yet in production and these keys
 correspond to testing instances.

 Trail of Bits 25 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Exploit Scenario
 An attacker obtains a copy of the source code from a former employee. She extracts the
 API keys for Etherscan and the Ethereum node RPC and performs multiple requests,
 causing increased monetary expenses for the Treehouse team, or a denial of service due to
 quota exhaustion when the Treehouse portfolio manager attempts to run the off-chain
 components. She also extracts the deployer private key and performs unauthorized
 operations on-chain with it.

 Recommendations
 Short term, remove the hard-coded secrets from source code and rotate their values.

 Long term, consider storing the secrets in a secret management solution such as
 1Password or Hashicorp Vault. Use tools such as Trufflehog on your CI/CD pipeline to
 detect secrets mistakenly committed to the repository.

 References
 ● GitHub: Removing sensitive data from a repository

 Trail of Bits 26 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/trufflesecurity/trufflehog
https://help.github.com/articles/removing-sensitive-data-from-a-repository/

 5. Use of outdated libraries

 Severity: Informational Difficulty: Undetermined

 Type: Patching Finding ID: TOB-TETH-5

 Target: tETH-offchain/requirements.txt

 Description
 We used pip audit to detect the use of outdated dependencies in the offchain codebase,
 which identified a number of vulnerable packages referenced by the requirements.txt .

 The following is a list of the vulnerable dependencies used in the offchain codebase, and
 known vulnerabilities that affect the versions currently used by the codebase:

 ● aiohttp (PYSEC-2024-24, PYSEC-2023-250, PYSEC-2023-251, PYSEC-2024-26,
 GHSA-7gpw-8wmc-pm8g, GHSA-5m98-qgg9-wh84)

 ● certifi (GHSA-248v-346w-9cwc)
 ● eth-abi (GHSA-3qwc-47jf-5rf7)
 ● idna (PYSEC-2024-60)
 ● requests (GHSA-9wx4-h78v-vm56)
 ● urllib3 (GHSA-34jh-p97f-mpxf)

 In many cases, the use of a vulnerable dependency does not necessarily mean the
 application is vulnerable. Vulnerable methods from such packages need to be called within
 a particular (exploitable) context. To determine whether the offchain applications are
 vulnerable to these issues, each issue will have to be manually triaged. The severity is
 marked informational as upon preliminary inspection, these issues do not appear to
 impact the offchain codebase.

 Recommendations
 Short term, update system dependencies to their latest versions wherever possible. Use
 tools such as pip audit to confirm that no vulnerable dependencies remain.

 Long term, implement these checks as part of the CI/CD pipeline of application
 development. Integrate an automated solution such as Dependabot into your development
 process to assist in promptly detecting and updating dependencies with known security
 problems.

 Trail of Bits 27 Treehouse tETH Security Assessment
 CONFIDENTIAL

 6. Potential code execution through deserialization

 Severity: High Difficulty: High

 Type: Data Validation Finding ID: TOB-TETH-6

 Target: tETH-offchain/utils/web3_func.py

 Description
 The offchain codebase loads contract ABIs from files and deserializes them into Python
 objects through the pickle.load function. If any of this data comes from untrusted input
 controlled by an attacker, this can lead to remote code execution (since pickle can execute
 arbitrary code that would be encoded within the data).

 def load_contract_abi (chain: str , address: str):
 # (...)
 file_name = f "abi_ { chain } _ { address } .pkl"
 file_path = os.path.join(ABI_DIR, file_name)

 if os.path.isfile(file_path):
 with open (file_path, "rb") as f:

 abi = pickle.load(f)
 return abi

 else :
 msc_logger.error(f "Cannot find abi file locally for { address } ")
 raise Exception (f "Cannot find abi file locally for { address } ")

 Figure 6.1: The data is loaded and deserialized using pickle.load
 (tETH-offchain/utils/web3_func.py)

 While these files appear to be generated from the program itself during execution as a sort
 of caching mechanism, there is no validation performed to ensure that they are
 trustworthy and have not been tampered with.

 Exploit Scenario
 An attacker with access to the code repository or the portfolio manager’s computer
 replaces one of the pickle files with a malicious copy that, when loaded, patches the
 executing code to silently modify the on-chain transactions generated by the program.
 When the portfolio manager executes the offchain code and the pickle file gets loaded, the
 process produces malicious transactions, leading to unexpected system state or a loss of
 funds.

 Trail of Bits 28 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.
https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.

 Recommendations
 Short term, consider using a different data file format that is not prone to the same
 vulnerabilities (e.g., JSON). If pickle files are essential to the system, ensure that all pickle
 files come from trusted sources and are explicitly reviewed. If possible, consider signing the
 pickle file to ensure that unreviewed pickle files are not executed by the system.
 Additionally, add relevant code comments to inform future reviewers that the specific use
 is safe.

 References
 ● Never a dill moment: Exploiting machine learning pickle files

 Trail of Bits 29 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/

 7. Overlapping and non-exhaustive conditions while analyzing cases

 Severity: Undetermined Difficulty: High

 Type: Data Validation Finding ID: TOB-TETH-7

 Target: tETH-offchain/utils/print_func.py

 Description
 The codebase has a printAnalysisResult function that interprets a value in the context
 of a set of bounds and thresholds and returns an identifier for each type of state. This
 identifier is sometimes used by the caller to determine if further actions need to be taken.
 However, the function’s implementation does not exhaustively cover all possibilities for the
 “crossing up” case, and checks overlapping cases on the “crossing down” case. This could
 eventually result in a misinterpretation of the data being shown or used.

 For the “crossing up” case, assuming lower_bound <= upper_bound <= threshold , we
 can see in figure 7.1 that the first conditional covers the [lower_bound, upper_bound]
 range (1) , the second conditional covers the (-inf, lower_bound) range (2) , the third
 conditional covers the (upper_bound, threshold) value (3) , and the fourth conditional
 covers the (threshold, +inf) range (4) . When combined, these ranges cover the majority
 of the values, with the exception of the threshold value itself.

 if threshold_type == "crossing_up" :
 if lower_bound <= value <= upper_bound: # (1)

 sta_logger.info(f "[{ LVL_1 }] { metric_name } is within the bounds.")
 # alert = f"metric_name_{LVL_1}"
 alert_level = f " { LVL_1 } _within_bounds"

 elif value < lower_bound: # (2)
 sta_logger.info(f "[{ LVL_2 }] { metric_name } is below lower bound.")
 # action needed
 alert_level = f " { LVL_2 } _below_lower"

 elif upper_bound < value < threshold: # (3)
 sta_logger.info(f "[{ LVL_2 }] { metric_name } is above upper bound.")
 # manager decision
 alert_level = f " { LVL_2 } _above_upper"

 elif value > threshold: # (4)
 sta_logger.info(f "[{ LVL_3 }] { metric_name } is above threshold level.")
 # action needed
 alert_level = f " { LVL_3 } _above_thres"

 Figure 7.1: The “crossing up” logic in printAnalysisResult
 (tETH-offchain/utils/print_func.py)

 Trail of Bits 30 Treehouse tETH Security Assessment
 CONFIDENTIAL

 This means that, if value is equal to threshold , alert_level will not be set and nothing
 will be logged, which is likely not intentional.

 In the “crossing down” case, assuming threshold <= lower_bound <= upper_bound ,
 we can see in figure 7.2 that the first conditional covers the [lower_bound,
 upper_bound] case (1) , the second conditional covers the (-inf, lower_bound) range (2) ,
 the third conditional covers the (upper_bound, +inf) range (3) and the fourth
 conditional (4) is dead code – any such cases will be covered by (2) already, as threshold <=
 lower_bound).

 elif threshold_type == "crossing_down" :
 if lower_bound <= value <= upper_bound: # (1)

 sta_logger.info(f "[{ LVL_1 }] { metric_name } is within the bound.")
 # no action needed
 alert_level = f " { LVL_1 } _within_bounds"

 elif value < lower_bound: # (2)
 sta_logger.info(f "[{ LVL_3 }] { metric_name } is below lower bound.")
 # action needed
 alert_level = f " { LVL_3 } _below_lower"

 elif upper_bound < value: # (3)
 sta_logger.info(f "[{ LVL_2 }] { metric_name } is above upper bound.")
 # manager decision
 alert_level = f " { LVL_2 } _above_upper"

 elif value < threshold: # (4)
 sta_logger.info(f "[{ LVL_3 }] { metric_name } is below threshold level.")
 # action needed
 alert_level = f " { LVL_3 } _below_thres"

 Figure 7.2: The “crossing down” logic in printAnalysisResult
 (tETH-offchain/utils/print_func.py)

 This means that the threshold alert will never trigger on the “crossing down” case, which is
 unlikely to be the intended behavior.

 Recommendations
 Short term, adjust the conditionals so that they cover the expected ranges and work as
 intended. Document the relationship between threshold, lower and upper bound values.
 Write unit tests for this function to ensure it continues to behave as intended.

 Long term, enhance the testing suite of off-chain components to verify functions perform
 as expected. implement automated runs of said tests as part of the CI/CD pipeline of
 application development.

 Trail of Bits 31 Treehouse tETH Security Assessment
 CONFIDENTIAL

 8. Potentially duplicate event fetching

 Severity: Informational Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-TETH-8

 Target: tETH-offchain/utils/pool_func.py

 Description
 The codebase has a getPoolEvents function that is currently used to collect Lido’s
 TokenRebased events from the chain. This function repeatedly queries the RPC for any
 events between a series of blocks, combines them into a single list, and returns the
 information. However, the function may collect and return the same event more than once,
 which can be unexpected and may skew the results of, for instance, the Lido staking APR
 SMA.

 start = _start_block
 end = _end_block if _end_block is not None else web3.eth.get_block_number()
 event_list = []
 step = (end - start) // delta

 for i in range (0 , step + 1 , 1):
 sBlock = start + i * delta
 eBlock = sBlock + delta
 # (...) get the events in blocks [sBlock, min(eBlock, end)]

 Figure 8.1: The logic used to split a large block range into smaller ones
 (tETH-offchain/utils/pool_func.py)

 The function will perform a series of queries that each span a delta amount of blocks. The
 end block used on a query will be the start block of the following query. However, the RPC
 queries used to fetch the logs take an inclusive [fromBlock, toBlock] range, as seen on
 the implementation by Go Ethereum and on ethers.js documentation . This means that any
 events that happen on a block number that is on the edge of a query will be received twice.

 For example, for a delta of 49999, a start block of 10000 and end of 109998, the code will
 query the ranges [10000, 59999] , [59999, 109998] , [109998, 109998] . Any events
 on blocks 59999 and 109998 will be duplicated.

 Recommendations
 Short term, verify this behavior with your RPC provider and update the code to not query
 events on the same block twice. Anecdotal evidence on the Internet suggests this behavior
 may vary on other RPC implementations. Alternatively, deduplicate events based on unique

 Trail of Bits 32 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/ethereum/go-ethereum/blob/v1.14.7/eth/filters/filter.go#L319-L324
https://docs.ethers.org/v5/api/providers/types/#providers-Filter
https://ethereum.stackexchange.com/questions/8199/are-both-the-eth-newfilter-from-to-fields-inclusive#comment162776_8219

 data such as their transaction hash. Add unit tests to ensure that the function behaves as
 expected on edge cases such as this one.

 Long term, review the documentation when integrating with third-party libraries and
 services and be aware of their specific behavior on edge cases.

 Trail of Bits 33 Treehouse tETH Security Assessment
 CONFIDENTIAL

 9. Potentially misleading order comparison

 Severity: Informational Difficulty: Undetermined

 Type: Data Validation Finding ID: TOB-TETH-9

 Target: tETH-offchain/src/execution/analyze_execution.py

 Description
 The codebase has a compare_order function that is used to compare an on-chain
 (simulated) order with an off-chain suggestion. According to the function documentation, if
 the on-chain order value matches, within a certain tolerance, the value computed for the
 off-chain suggestion, the function returns true, otherwise it returns false. However, the
 implementation will also always return true if the on-chain order has not yet been
 simulated, irrespective of the order value, which could be unexpected and misleading.

 This behavior is documented with a TODO comment in the implementation code, as shown
 on figure 9.1.

 isSimulated = onchain_order["isSimulated"]

 # TODO: The logic here need to be updated.
 # Technically the unsimulated order should not reach here. But the current logic
 # may reach here. So I just keep this first, avoiding affecting the whole script.
 if isSimulated:

 # (...) perform the comparison and return True or False
 else :

 return True

 Figure 9.1: The logic used to handle unsimulated orders
 (tETH-offchain/src/execution/analyze_execution.py)

 Recommendations
 Short term, update the function to throw an error or return false or a different sentinel
 value if comparing unsimulated orders is unacceptable. Correct any calling code paths to
 ensure no unsimulated orders reach this function. Add a test to ensure unsimulated orders
 are identified and handled correctly.

 Long term, document any specific requirements in the function documentation, so that
 users are aware of such caveats. Follow the principle of least astonishment when
 implementing helper functions.

 Trail of Bits 34 Treehouse tETH Security Assessment
 CONFIDENTIAL

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 35 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 36 Treehouse tETH Security Assessment
 CONFIDENTIAL

 B. Code Maturity Categories

 The following tables describe the code maturity categories and rating criteria used in this
 document.

 Code Maturity Categories

 Category Description

 Arithmetic The proper use of mathematical operations and semantics

 Auditing The use of event auditing and logging to support monitoring

 Authentication /
 Access Controls

 The use of robust access controls to handle identification and
 authorization and to ensure safe interactions with the system

 Complexity
 Management

 The presence of clear structures designed to manage system complexity,
 including the separation of system logic into clearly defined functions

 Configuration The configuration of system components in accordance with best
 practices

 Cryptography and
 Key Management

 The safe use of cryptographic primitives and functions, along with the
 presence of robust mechanisms for key generation and distribution

 Data Handling The safe handling of user inputs and data processed by the system

 Decentralization The presence of a decentralized governance structure for mitigating
 insider threats and managing risks posed by contract upgrades

 Documentation The presence of comprehensive and readable codebase documentation

 Low-Level
 Manipulation

 The justified use of inline assembly and low-level calls

 Maintenance The timely maintenance of system components to mitigate risk

 Memory Safety
 and Error Handling

 The presence of memory safety and robust error-handling mechanisms

 Testing and
 Verification

 The presence of robust testing procedures (e.g., unit tests, integration
 tests, and verification methods) and sufficient test coverage

 Transaction
 Ordering

 The system’s resistance to transaction-ordering attacks

 Trail of Bits 37 Treehouse tETH Security Assessment
 CONFIDENTIAL

 Rating Criteria

 Rating Description

 Strong No issues were found, and the system exceeds industry standards.

 Satisfactory Minor issues were found, but the system is compliant with best practices.

 Moderate Some issues that may affect system safety were found.

 Weak Many issues that affect system safety were found.

 Missing A required component is missing, significantly affecting system safety.

 Not Applicable The category is not applicable to this review.

 Not Considered The category was not considered in this review.

 Further
 Investigation
 Required

 Further investigation is required to reach a meaningful conclusion.

 Trail of Bits 38 Treehouse tETH Security Assessment
 CONFIDENTIAL

 C. Code Quality Recommendations

 The following recommendations are not associated with any specific vulnerabilities.
 However, they will enhance code readability and may prevent the introduction of
 vulnerabilities in the future.

 ● There are many instances where an if statement is compared against the Boolean
 true or false directly. The comparison to true or false values can be dropped to
 simplify the code.

 78 if (IVault(VAULT).isAllowableAsset(_asset) == false) revert
 NotAllowableAsset();

 Figure C.1: An example of an if statement with an unnecessary Boolean comparison.
 (tETH-protocol/contracts/TreehouseRouter.sol#78)

 ● The variable names of the constants of the MainnetLidoAddresses contract do
 not follow the ALL_CAPS naming convention for constant values.

 ● There are several instances of unchecked blocks being used to manually optimize
 simple loop increments. As these contracts specify Solidity 0.8.24, they benefit from
 the built-in optimization added in version 0.8.22 that automatically optimizes this as
 part of the compiling process, rendering these unchecked blocks redundant.

 101 function whitelistActions (uint _strategyId , bytes4[] calldata
 _whitelistedActions) external onlyOwner {
 102 for (uint i ; i < _whitelistedActions.length;) {
 103 if
 (parameters[_safeGetStrategyAddress(_strategyId)].whitelistedActions.add(_whiteliste
 dActions[i]) == false)
 104 revert AlreadyExist();
 105
 106 emit ActionWhitelisted(_whitelistedActions[i]);
 107
 108 unchecked {
 109 ++i;
 110 }
 111 }
 112 }

 Figure C.2: An example of an unnecessary unchecked block.
 (tETH-protocol/contracts/strategy/StrategyStorage.sol#101–112)

 ● There are large amounts of commented-out code on the offchain codebase. If the
 code is no longer needed, it should be removed to improve readability and
 maintainability.

 Trail of Bits 39 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L78-L78
https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/strategy/StrategyStorage.sol#L101-L112

 ● The offchain codebase contains several blocks of code that are duplicated several
 times with minimal changes, for example in the validate_order function. Such
 code should be refactored to improve maintainability and readability.

 ● Multiple files in the offchain codebase contain code that adjusts sys.path in
 runtime. The code should be reorganized to make proper use of packages and
 modules, and a way to install the solution should be added to the repository.

 ● The offchain codebase contains multiple magic values hardcoded throughout the
 files, a few examples are shown below. These should be either converted to
 constants or moved to the configuration files. Some don’t match the documentation
 that accompanies them (e.g., in figure C.4 it says 20% but calculates 30% instead).

 tolerance = 1 / 100 # 1% slippage

 Figure C.3: A hardcoded tolerance value
 (tETH-offchain/src/execution/analyze_execution.py#112)

 STAKE_RATE_LOWER = STAKE_RATE_THRES * 1.05 # 5% higher than borrow rate
 STAKE_RATE_UPPER = STAKE_RATE_THRES * 1.3 # 20% higher than borrow rate

 Figure C.4: Hardcoded lower and upper percentage bounds
 (tETH-offchain/src/state_handler/analyze_state.py#139–140)

 ● The fork_blockchain function currently sleeps for 10 seconds while anvil starts
 and the forked chain becomes usable. This could be improved and made more
 reliable by performing a health check of the forked chain instead.

 Trail of Bits 40 Treehouse tETH Security Assessment
 CONFIDENTIAL

 D. Automated Static Analysis

 This appendix describes the setup of the automated analysis tools used during this audit
 for the off-chain components.

 Though static analysis tools frequently report false positives, they detect certain categories
 of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,
 with essentially perfect precision. We recommend periodically running these static analysis
 tools and reviewing their findings.

 Semgrep
 To install Semgrep, we used pip by running python3 -m pip install semgrep .

 To run Semgrep on the codebase, we ran the following command in the root directory of
 the project (running multiple predefined rules simultaneously by providing multiple
 --config arguments):

 semgrep --config "p/trailofbits" --config "p/ci" --config "p/python"
 --config "p/security-audit" --metrics=off

 We also used semgrep-rules-manager to fetch and run other third-party rules.

 We recommend integrating Semgrep into the project’s CI/CD pipeline. To thoroughly
 understand the Semgrep tool, refer to the Trail of Bits Testing Handbook , where we aim to
 streamline the use of Semgrep and improve security testing effectiveness. Also, consider
 doing the following:

 ● Limit results to error severity only by using the --severity ERROR flag.

 ● Focus first on rules with high confidence and medium- or high-impact metadata.

 ● Use the SARIF format (by using the --sarif Semgrep argument) with the SARIF
 Viewer for Visual Studio Code extension. This will make it easier to review the
 analysis results and drill down into specific issues to understand their impact and
 severity.

 CodeQL
 We installed CodeQL by following CodeQL’s installation guide .

 After installing CodeQL, we ran the following command to create the project database for
 the Treehouse offchain repository:

 codeql database create treehouse.db --language=python

 Trail of Bits 41 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/iosifache/semgrep-rules-manager/
https://appsec.guide/docs/static-analysis/semgrep/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

 We then ran the following command to query the database:

 codeql database analyze treehouse.db --format=sarif-latest
 --output=codeql_res.sarif -- python-lgtm-full
 python-security-and-quality python-security-experimental

 For more information about CodeQL, refer to the CodeQL chapter of the Trail of Bits
 Testing Handbook .

 Trail of Bits 42 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://appsec.guide/docs/static-analysis/codeql/
https://appsec.guide/docs/static-analysis/codeql/

 E. Fix Review Results

 When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
 identified in the original report. This work involves a review of specific areas of the source
 code and system configuration, not comprehensive analysis of the system.

 On August 9, 2024, Trail of Bits reviewed the fixes and mitigations implemented by the
 Treehouse team for the off-chain issues identified in this report. We reviewed each fix to
 determine its effectiveness in resolving the associated issue.

 While the team provided commentary as to the status of each issue, they did not provide
 specific references to independent commits or pull requests that address each finding.
 Instead, they provided us with a new version of the tETH-offchain repository, identified
 by the hash c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c . This new version of the
 codebase is a major rewrite of the off-chain code, and as such, the affected code may not
 be present in its original form on the newer codebase. Instead of a direct fix review, we
 sought to see, within reason and time constraints, if the same problems that were reported
 originally are present in the new codebase.

 On August 23, 2024, Trail of Bits reviewed an additional fix for issue TOB-TETH-7 contained
 in commit 84ef318974eff0c2f0e1c29d0b74416233ae361a .

 On August 27, 2024, Trail of Bits reviewed an additional commit
 (c00db745fdac4dbd8f07635026fd193cc1abaf5c) that includes the fixes for the
 on-chain issue TOB-TETH-3 .

 In summary, of the 9 off issues described in this report, Treehouse has resolved 4 issues,
 and has not resolved the remaining 5 issues. For additional information, please see the
 Detailed Fix Review Results below.

 ID Title Status

 1 Incorrect accounting logic for stETH deposits Unresolved

 2 Chainlink oracles could return stale price data Unresolved

 3 Users can redeem tETH tokens to iETH Resolved

 4 Secrets checked into source code Unresolved

 5 Use of outdated libraries Unresolved

 Trail of Bits 43 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/compare/2539d30504aec46d2a753fac2c18a3872691507a...c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c

 6 Potential code execution through deserialization Resolved

 7 Overlapping and non-exhaustive conditions while analyzing cases Resolved

 8 Potentially duplicate event fetching Unresolved

 9 Potentially misleading order comparison Resolved

 Detailed Fix Review Results

 TOB-TETH-1: Incorrect accounting logic for stETH deposits
 Unresolved in commit c00db74 . The client provided the following context for not fixing this
 issue:

 TOB-TETH-1: After extensive discussion, it is concluded that this issue results from a
 rounding error on Lido's end and is not economically exploitable. The discrepancy is
 minimal, affecting the vault by at most 2 wei of wstETH per deposit, regardless of the
 deposit size. For instance, 100,000 deposits of 1 stETH each would lead to a shortfall of
 only 0.000000000000200000 wstETH, which is negligible. This issue will be acknowledged
 as "will not fix" since it does not pose any significant economic risk or exploitation
 potential.

 TOB-TETH-2: Chainlink oracles could return stale price data
 Unresolved in commit c00db74 . The client provided the following context for not fixing this
 issue:

 TOB-TETH-2: We primarily use Chainlink oracles to price our vault NAV during
 accounting. Many protocols use oracles directly without implementing staleness checks.
 We can address this issue off-chain by performing our own staleness checks before
 running our accounting processes. This issue will be acknowledged as "will not fix," but
 we will note that staleness checks will likely be performed off-chain before accounting.

 TOB-TETH-3: Users can redeem tETH tokens to iETH
 Resolved in commit c00db74 . The implementation was updated to override the _deposit
 and _withdraw functions of the inherited ERC4626 contract. Therefore, the exposed
 redeem and withdraw functions (from the inherited ERC4626 contract) can no longer be
 called by any account, only by the account with the Minter role. Additionally, this limits the
 exposed mint function to only be callable by an account with the Minter role.

 TOB-TETH-4: Secrets checked into source code
 Unresolved in commit c6a6a11 . While Treehouse has done a first step towards resolving
 this issue and refactored some of the hard-coded secrets into configuration variables, we

 Trail of Bits 44 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

 still find valid, unrevoked secrets present in the repository (for instance, several node URLs
 and an Etherscan API key on file
 config/thirdparty_config/strat_config_thirdparty.yml , or NodeReal keys
 hardcoded in tests), as well as committed on the repository’s Git history (such as an Infura
 API key, 86c…b5f).

 The team has noted through comments in the codebase that they intend to move these
 secrets to a safer place (like a secrets vault) before moving to production. This is, however,
 not yet implemented on the codebase as of commit d00c0a9 , and we did not observe any
 work towards integration with a secrets vault solution in the codebase.

 TOB-TETH-5: Use of outdated libraries
 Unresolved in commit c6a6a11 . Treehouse has only updated one dependency in the
 codebase, urllib3 . We do not observe any new processes or workflows in the repository
 for becoming aware of vulnerable dependencies nor for taking actions to update them.

 The client provided the following context for this finding’s fix status:

 TOB-TETH-5: We commonly use stable versions of packages, which are not necessarily the
 latest versions. It is impractical to mandate the use of the latest versions for all
 dependencies. Therefore, this recommendation is not feasible. No action needed

 TOB-TETH-6: Potential code execution through deserialization
 Resolved in commit c6a6a11 . The codebase has been refactored and no longer uses pickle
 files for any of its functionality.

 TOB-TETH-7: Overlapping and non-exhaustive conditions while analyzing cases
 Resolved in commit 84ef318 . The code shown in the finding has been reworked and
 rewritten, and its logic now lives as function analyze_metrics in file
 src/state_handler/analyze_state.py . The original fix reviewed in commit c6a6a11
 was still affected by both logic errors explained in the finding, and sample test cases are
 provided in appendix G to more easily showcase said issues; however this has now been
 resolved in commit 84ef318 .

 It is worth noting that some of the new test cases introduced to test this functionality in
 function test_analyze_metrics_higher from file
 tests/state_handler/test_analyze_state.py misuse the analyze_metrics
 function by providing a threshold value higher than the upper bound on the
 higher_better case, while the function expects a threshold value lower than the lower
 bound. This expected usage is exemplified by the arithmetic relation between the
 arguments passed by codebase, e.g. while calculating the Lido stake rate. The new test
 functions also do not exercise all edge cases. The expected usage and the relationship
 between threshold, lower and upper bound values has also not been documented in the
 codebase.

 Trail of Bits 45 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a

 The client provided the following context for this finding’s fix status:

 Since we are upgrading our code base for v2 vault, many of the test cases may not be
 applicable anymore after some core functions are changed. The issue related with test
 cases are acknowledged and we will be fixing all the test cases together after we finish
 code updates for v2 vault.

 TOB-TETH-8: Potentially duplicate event fetching
 Unresolved in commit c6a6a11 . The code, now living on function get_pool_events in file
 utils/web3_func.py , continues to exhibit the same issue of overlapping range
 generation, which might result in duplicated events. A sample test case is provided in
 appendix G to more easily showcase the issue.

 The client provided the following context for this finding’s fix status:

 TOB-TETH-8: This issue is deemed unlikely to affect our implementation as we are
 querying for a single event type. The possibility of duplicating a single event is negligible.
 The overall code structure has been improved, and the current approach is considered
 sufficient for our needs.

 TOB-TETH-9: Potentially misleading order comparison
 Resolved in commit c6a6a11 . The compare_order function now logs an error and returns
 false if an unsimulated order is detected.

 Trail of Bits 46 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

 F. Fix Review Status Categories

 The following table describes the statuses used to indicate whether an issue has been
 sufficiently addressed.

 Fix Status

 Status Description

 Undetermined The status of the issue was not determined during this engagement.

 Unresolved The issue persists and has not been resolved.

 Partially Resolved The issue persists but has been partially resolved.

 Resolved The issue has been sufficiently resolved.

 Trail of Bits 47 Treehouse tETH Security Assessment
 CONFIDENTIAL

 G. Fix Review Test Cases

 The following test functions exercise the functionality provided by the analyze_metrics
 function, in both “ lower_better ” and “ higher_better ” scenarios, to cover the function
 edge cases. The test failures observed by running these tests against the codebase as of
 commit c6a6a11 are included as figure G.2.

 def test_analyze_metrics_lower (self) -> None :
 """Test the "lower_better" case of the analyze_metrics function.

 This assumes the following range setup:

 Lower Upper Threshold
 20 60 100
 """
 cases = [

 (10 , "MODERATE_below_lower" , "below lower bound"),
 (20 , "BAU_within_bounds" , "exactly lower bound"),
 (40 , "BAU_within_bounds" , "within [L, U] bounds"),
 (60 , "BAU_within_bounds" , "exactly upper bound"),
 (80 , "MODERATE_above_upper" , "above upper bound, under threshold"),
 (100 , "EXTREME_above_thres" , "exactly threshold"),
 (120 , "EXTREME_above_thres" , "above threshold"),

]

 for (value, expected_result, msg) in cases:
 with self .subTest(msg=msg, value=value, expected_result=expected_result):

 result = analyze_metrics("Metric" , value, 60 , 20 , 100 , "lower_better")
 self .assertEqual(result, expected_result)

 def test_analyze_metrics_higher (self) -> None :
 """Test the "higher_better" case of the analyze_metrics function.

 This assumes the following range setup:

 Threshold Lower Upper
 20 60 100
 """
 cases = [

 (10 , "EXTREME_below_thres" , "below threshold"),
 (20 , "EXTREME_below_thres" , "exactly threshold"),
 (40 , "EXTREME_below_lower" , "below lower bound, greater than threshold"),
 (60 , "BAU_within_bounds" , "exactly lower bound"),
 (80 , "BAU_within_bounds" , "within [L, U] bounds"),
 (100 , "BAU_within_bounds" , "exactly upper bound"),
 (120 , "MODERATE_above_upper" , "above upper bound"),

]

 for (value, expected_result, msg) in cases:
 with self .subTest(msg=msg, value=value, expected_result=expected_result):

 Trail of Bits 48 Treehouse tETH Security Assessment
 CONFIDENTIAL

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

 result = analyze_metrics("Metric" , value, 100 , 60 , 20 , "higher_better")
 self .assertEqual(result, expected_result)

 Figure G.1: Test functions for analyze_metrics

 ==
 ERROR: test_analyze_metrics_lower (__main__.TestAnalyzeState) [exactly threshold] (value= 100 ,
 expected_result= 'EXTREME_above_thres')
 Test the "lower_better" case of the analyze_metrics function.
 --
 Traceback (most recent call last):
 File "DIR/tests/state_handler/test_analyze_state.py" , line 47 , in test_analyze_metrics_lower
 result = analyze_metrics("Metric" , value, 60 , 20 , 100 , "lower_better")

 File "DIR/tests/state_handler/../../src/state_handler/analyze_state.py" , line 136 , in
 analyze_metrics

 raise Exception ("Not found matched alert level.")
 Exception : Not found matched alert level.

 ==
 FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [below threshold] (value= 10 ,
 expected_result= 'EXTREME_below_thres')
 Test the "higher_better" case of the analyze_metrics function.
 --
 Traceback (most recent call last):
 File "DIR/tests/state_handler/test_analyze_state.py" , line 71 , in test_analyze_metrics_higher
 self .assertEqual(result, expected_result)

 AssertionError : 'EXTREME_below_lower' != 'EXTREME_below_thres'
 - EXTREME_below_lower
 ? ^^^ ^
 + EXTREME_below_thres
 ? ^^^ ^

 ==
 FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [exactly threshold] (value= 20 ,
 expected_result= 'EXTREME_below_thres')
 Test the "higher_better" case of the analyze_metrics function.
 --
 Traceback (most recent call last):
 File "DIR/tests/state_handler/test_analyze_state.py" , line 71 , in test_analyze_metrics_higher
 self .assertEqual(result, expected_result)

 AssertionError : 'EXTREME_below_lower' != 'EXTREME_below_thres'
 - EXTREME_below_lower
 ? ^^^ ^
 + EXTREME_below_thres
 ? ^^^ ^

 Figure G.2: Test failures observed by running the tests in figure G.1

 The following sample test function exercises the functionality provided by the
 get_pool_events function. The test failure observed by running this test is included as
 figure G.4.

 def test_get_pool_events_no_duplicate (self) -> None :
 events = get_pool_events(

 "eth" ,
 "0xae7ab96520de3a18e5e111b5eaab095312d7fe84" ,

 Trail of Bits 49 Treehouse tETH Security Assessment
 CONFIDENTIAL

 20412190 - 49999 ,
 20412190 + 49999 ,
 "TokenRebased" ,
 "https://eth-mainnet.nodereal.io/v1/ REDACTED_SECRET " ,

)
 tx_hashes = [event["transactionHash"] for event in events]

 # use a set to deduplicate events. If there are no repeated
 # events / tx hashes, both the set and the list should be the
 # same length
 self .assertEqual(len (set (tx_hashes)), len (tx_hashes))

 Figure G.3: Test function for get_pool_events

 ==
 FAIL: test_get_pool_events_no_duplicate (__main__.TestWeb3Func)
 --
 Traceback (most recent call last):
 File "DIR/tests/utils/test_web3_func.py" , line 35 , in

 test_get_pool_events_no_duplicate
 self .assertEqual(len (set (tx_hashes)), len (tx_hashes))

 AssertionError : 13 != 14

 Figure G.4: Test failure observed by running the test in figure G.3

 Trail of Bits 50 Treehouse tETH Security Assessment
 CONFIDENTIAL

