
‭Treehouse tETH‬
‭Security Assessment‬

‭August 27, 2024‬

‭Prepared for:‬

‭Ben Loh‬
‭Treehouse Finance‬

‭Prepared by:‬‭Michael Colburn, Justin Jacob, Damilola‬‭Edwards, Emilio López and David‬
‭Pokora‬

‭About Trail of Bits‬

‭Founded in 2012 and headquartered in New York, Trail of Bits provides technical security‬
‭assessment and advisory services to some of the world’s most targeted organizations. We‬
‭combine high-end security research with a real-world attacker mentality to reduce risk and‬
‭fortify code. With 100+ employees around the globe, we’ve helped secure critical software‬
‭elements that support billions of end users, including Kubernetes and the Linux kernel.‬

‭We maintain an exhaustive list of publications at‬‭https://github.com/trailofbits/publications‬‭,‬
‭with links to papers, presentations, public audit reports, and podcast appearances.‬

‭In recent years, Trail of Bits consultants have showcased cutting-edge research through‬
‭presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,‬
‭the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.‬

‭We specialize in software testing and code review projects, supporting client organizations‬
‭in the technology, defense, and finance industries, as well as government entities. Notable‬
‭clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.‬

‭Trail of Bits also operates a center of excellence with regard to blockchain security. Notable‬
‭projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,‬
‭MakerDAO, Matic, Uniswap, Web3, and Zcash.‬

‭To keep up to date with our latest news and announcements, please follow‬‭@trailofbits‬‭on‬
‭Twitter and explore our public repositories at‬‭https://github.com/trailofbits‬‭.‬‭To engage us‬
‭directly, visit our “Contact” page at‬‭https://www.trailofbits.com/contact‬‭,‬‭or email us at‬
‭info@trailofbits.com‬‭.‬

‭Trail of Bits, Inc.‬
‭497 Carroll St., Space 71, Seventh Floor‬
‭Brooklyn, NY 11215‬
‭https://www.trailofbits.com‬
‭info@trailofbits.com‬

‭Trail of Bits‬ ‭1‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

‭Notices and Remarks‬

‭Copyright and Distribution‬
‭© 2024 by Trail of Bits, Inc.‬

‭All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this‬
‭report in the United Kingdom.‬

‭This report is considered by Trail of Bits to be business confidential information; it is‬
‭licensed to Treehouse under the terms of the project statement of work and intended‬
‭solely for internal use by Treehouse. Material within this report may not be reproduced or‬
‭distributed in part or in whole without the express written permission of Trail of Bits.‬

‭The sole canonical source for Trail of Bits publications, if published, is the‬‭Trail of Bits‬
‭Publications page‬‭. Reports accessed through any source‬‭other than that page may have‬
‭been modified and should not be considered authentic.‬

‭Test Coverage Disclaimer‬
‭All activities undertaken by Trail of Bits in association with this project were performed in‬
‭accordance with a statement of work and agreed upon project plan.‬

‭Security assessment projects are time-boxed and often reliant on information that may be‬
‭provided by a client, its affiliates, or its partners. As a result, the findings documented in‬
‭this report should not be considered a comprehensive list of security issues, flaws, or‬
‭defects in the target system or codebase.‬

‭Trail of Bits uses automated testing techniques to rapidly test the controls and security‬
‭properties of software. These techniques augment our manual security review work, but‬
‭each has its limitations: for example, a tool may not generate a random edge case that‬
‭violates a property or may not fully complete its analysis during the allotted time. Their use‬
‭is also limited by the time and resource constraints of a project.‬

‭Trail of Bits‬ ‭2‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/trailofbits/publications
https://github.com/trailofbits/publications

‭Table of Contents‬

‭About Trail of Bits‬ ‭1‬
‭Notices and Remarks‬ ‭2‬
‭Table of Contents‬ ‭3‬
‭Project Summary‬ ‭4‬
‭Executive Summary‬ ‭5‬
‭Project Goals‬ ‭8‬
‭Project Targets‬ ‭9‬
‭Project Coverage‬ ‭10‬
‭Automated Testing‬ ‭13‬

‭Functional Invariants‬ ‭13‬
‭System Invariants‬ ‭14‬

‭Codebase Maturity Evaluation‬ ‭15‬
‭Summary of Findings‬ ‭19‬
‭Detailed Findings‬ ‭20‬

‭1. Incorrect accounting logic for stETH deposits‬ ‭20‬
‭2. Chainlink oracles could return stale price data‬ ‭22‬
‭3. Users can redeem tETH tokens to iETH‬ ‭23‬
‭4. Secrets checked into source code‬ ‭25‬
‭5. Use of outdated libraries‬ ‭27‬
‭6. Potential code execution through deserialization‬ ‭28‬
‭7. Overlapping and non-exhaustive conditions while analyzing cases‬ ‭30‬
‭8. Potentially duplicate event fetching‬ ‭32‬
‭9. Potentially misleading order comparison‬ ‭34‬

‭A. Vulnerability Categories‬ ‭35‬
‭B. Code Maturity Categories‬ ‭37‬
‭C. Code Quality Recommendations‬ ‭39‬
‭D. Automated Static Analysis‬ ‭41‬
‭E. Fix Review Results‬ ‭43‬

‭Detailed Fix Review Results‬ ‭44‬
‭F. Fix Review Status Categories‬ ‭47‬
‭G. Fix Review Test Cases‬ ‭48‬

‭Trail of Bits‬ ‭3‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Project Summary‬

‭Contact Information‬
‭The following project manager was associated with this project:‬

‭Mary O’Brien‬‭, Project Manager‬
‭mary.obrien@trailofbits.com‬

‭The following engineering directors were associated with this project:‬

‭David Pokora‬‭, Engineering Director, Application Security‬
‭david.pokora@trailofbits.com‬

‭Josselin Feist‬‭, Engineering Director, Blockchain‬
‭josselin.feist@trailofbits.com‬

‭The following consultants were associated with this project:‬

‭Michael Colburn‬‭, Consultant‬ ‭David Pokora‬‭, Consultant‬
‭michael.colburn@trailofbits.com‬ ‭david.pokora@trailofbits.com‬

‭Damilola Edwards‬‭, Consultant‬ ‭Justin Jacob‬‭, Consultant‬
‭damilola.edwards@trailofbits.com‬ ‭justin.jacob@trailofbits.com‬

‭Emilio López‬‭, Consultant‬
‭emilio.lopez@trailofbits.com‬

‭Project Timeline‬
‭The significant events and milestones of the project are listed below.‬

‭Date‬ ‭Event‬

‭July 8, 2024‬ ‭Pre-project kickoff call‬

‭July 18, 2024‬ ‭Status update meeting #1‬

‭July 29, 2024‬ ‭Delivery of report draft‬

‭July 29, 2024‬ ‭Report readout meeting‬

‭August 27, 2024‬ ‭Delivery of report with fix review appendix‬

‭Trail of Bits‬ ‭4‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

mailto:mary.obrien@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:josselin.feist@trailofbits.com
mailto:michael.colburn@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:damilola.edwards@trailofbits.com
mailto:justin.jacob@trailofbits.com
mailto:emilio.lopez@trailofbits.com

‭Executive Summary‬

‭Engagement Overview‬
‭Treehouse engaged Trail of Bits to review the security of the tETH contracts and offchain‬
‭code. tETH is a liquid restaking token that serves to converge the fragmented on-chain ETH‬
‭interest rates market. Holders of tETH earn yield through interest rate arbitrage while still‬
‭being able to use tETH for DeFi activities.‬

‭A team of two consultants from the blockchain team conducted a review focusing on the‬
‭smart contracts from July 10 to July 23, 2024, for a total of two engineer-weeks of effort.‬
‭Another team of two consultants from the appsec team conducted a separate review in‬
‭parallel focusing on the off-chain components from July 10 to July 26, for a total of two‬
‭engineer-weeks effort. Our testing efforts focused‬‭the identification of flaws that could‬
‭result in a compromise of confidentiality, integrity, or availability of the target systems. We‬
‭conducted this audit with full knowledge of the system‬‭.‬‭With full access to source code and‬
‭documentation, we performed static and dynamic testing of the smart contracts and‬
‭off-chain components, using automated and manual processes. The final off-chain code‬
‭was delivered a few days after the review started, on July 15. Towards the end of the smart‬
‭contract review period the Treehouse team provided additional code for review at commits‬
‭728d47‬‭and‬‭a930e0‬‭which was reviewed on a best effort‬‭basis.‬

‭Observations and Impact‬
‭The tETH smart contracts relies on privileged actors to manually perform necessary‬
‭operations; for example, operations related to PnL distribution, funding the redemption‬
‭contract to enable user withdrawals, updates to state variables that directly impact users’‬
‭solvency and funds, investments into and divestments from strategies. Additionally we‬
‭identified two issues related with integration with external protocols (‬‭TOB-TETH-1‬‭) and‬
‭(‬‭TOB-TETH-2‬‭). It is therefore important to highlight‬‭the need for a careful review of the‬
‭documentation and guidelines of protocols the system interacts with to ensure that the‬
‭integrations are done in line with the recommended best practices. Treehouse should also‬
‭pay attention to the security of the privileged actor accounts. The Treehouse team‬
‭mentioned they plan to use a Gnosis multi-signature wallet for this purpose, but the‬
‭support for this is not yet implemented in the offchain codebase.‬

‭Recommendations‬
‭Based on the codebase maturity evaluation and findings identified during the security‬
‭review, Trail of Bits recommends that the Treehouse team take the following steps prior to‬
‭achieving deployment:‬

‭●‬ ‭Remediate the findings disclosed in this report.‬‭These findings should be‬
‭addressed as part of a direct remediation or as part of any refactor that may occur‬
‭when addressing other recommendations..‬

‭Trail of Bits‬ ‭5‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/0xhypn/tETH-protocol/pull/53/commits/728d4748f8ba2316e698a99d266bbef0b33323dc
https://github.com/0xhypn/tETH-protocol/pull/53/commits/a930e0825b8a9d9acfa5f579fbdfaff91edd507b

‭●‬ ‭Identify all system properties that are expected to hold and use dynamic‬
‭end-to-end fuzz testing to validate those system properties.‬

‭●‬ ‭Implement a secure way to sign transactions on the off-chain component, that‬
‭preferably holds the keys on one or more secure hardware devices and‬
‭requires multi-party approval for a transaction to be processed.‬‭Currently, the‬
‭system only supports signing transactions with a hardcoded EOA wallet that is‬
‭embedded in the codebase, and the contracts are not controlled through a‬
‭multi-signature wallet.‬‭The Treehouse team mentioned they will be using‬
‭multi-signatory with multi-party approval for the transaction to be processed‬

‭●‬ ‭Significantly improve testing of off-chain components.‬‭Currently the off-chain‬
‭codebase does not have unit tests and test automation, and relies on a manual‬
‭scenario simulation script for manual testing.‬

‭●‬ ‭Implement automated CI/CD processes for the off-chain components.‬‭These‬
‭should include automated testing, dependency vulnerability checks (e.g. via‬
‭Dependabot), source code static analysis (e.g. via Semgrep or CodeQL) and pull‬
‭request review and approval criteria.‬

‭●‬ ‭Determine if there is a risk in interacting with public RPC providers in the‬
‭off-chain codebase and adjust accordingly.‬‭Relying‬‭on a single external RPC‬
‭provider as a source of truth could lead to a skewed view of the protocol state if the‬
‭provider is compromised or their nodes fork off the canonical chain. Sending‬
‭transactions through the public mempool could also allow for third-parties to‬
‭perform, for example, sandwich attacks. Consider performing RPC calls to one or‬
‭more private or self hosted nodes in parallel and compare their results. Evaluate‬
‭using a private mempool service to submit transactions to the chain.‬

‭●‬ ‭Use integer values for off-chain arithmetic.‬‭Floating‬‭point numbers may lose‬
‭precision in counterintuitive ways. For financial applications in which precision is‬
‭important, fixed-point math using big integers is a well-established best practice.‬
‭Python integers are of arbitrary length out of the box.‬

‭Trail of Bits‬ ‭6‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Finding Severities and Categories‬
‭The following tables provide the number of findings by severity and category.‬

‭EXPOSURE ANALYSIS‬

‭Severity‬ ‭Count‬

‭High‬ ‭1‬

‭Medium‬ ‭0‬

‭Low‬ ‭2‬

‭Informational‬ ‭5‬

‭Undetermined‬ ‭1‬

‭CATEGORY BREAKDOWN‬

‭Category‬ ‭Count‬

‭Access Controls‬ ‭1‬

‭Data Exposure‬ ‭1‬

‭Data Validation‬ ‭6‬

‭Patching‬ ‭1‬

‭Trail of Bits‬ ‭7‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Project Goals‬

‭The engagement was scoped to provide a security assessment of the tETH protocol.‬
‭Specifically, we sought to answer the following non-exhaustive list of questions:‬

‭●‬ ‭Could an attacker steal funds from the system?‬

‭●‬ ‭Are appropriate access controls in place?‬

‭●‬ ‭Are the arithmetic calculations performed during token minting and redeeming‬
‭operations correct?‬

‭●‬ ‭Is the protocol vulnerable to denial-of-service (DoS) attacks?‬

‭●‬ ‭Is the arithmetic for handling various types of collateral performed correctly?‬

‭●‬ ‭Are user-provided parameters sufficiently validated?‬

‭●‬ ‭Are there any economic attack vectors in the system?‬

‭●‬ ‭Does the protocol convert tokens to and from shares correctly?‬

‭●‬ ‭Is the share price prone to manipulation?‬

‭●‬ ‭Could the use of low-level calls in the codebase cause any problems?‬

‭●‬ ‭Could a user’s funds become stuck in the system?‬

‭●‬ ‭Do the off-chain components query the chain state adequately?‬

‭●‬ ‭Are different chain states sufficiently validated in the off-chain components?‬

‭Trail of Bits‬ ‭8‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Project Targets‬

‭The engagement involved a review and testing of the targets listed below.‬

‭tETH protocol‬
‭Repository‬ ‭https://github.com/treehouse-gaia/tETH-protocol‬

‭Version‬ ‭02c3ab1fafa7610ba43fc3cc905ccad504b39cf3‬

‭Type‬ ‭Solidity‬

‭Platform‬ ‭EVM‬

‭tETH offchain‬
‭Repository‬ ‭https://github.com/treehouse-gaia/tETH-offchain‬

‭Version‬ ‭2539d30504aec46d2a753fac2c18a3872691507a‬

‭Type‬ ‭Python‬

‭Platform‬ ‭Linux‬

‭Trail of Bits‬ ‭9‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-protocol/tree/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3
https://github.com/treehouse-gaia/tETH-offchain/tree/2539d30504aec46d2a753fac2c18a3872691507a

‭Project Coverage‬

‭This section provides an overview of the analysis coverage of the review, as determined by‬
‭our high-level engagement goals. Our approaches included the following:‬

‭●‬ ‭Deposits :‬‭The TreehouseRouter contract serves as‬‭the gateway for deposits into‬
‭the protocol, all deposited assets are sent to the vault and the depositor receives‬
‭tETH token in return. The contracts relevant to the deposit execution flow include‬
‭the‬‭TreehouseRouter‬‭,‬‭Vault‬‭,‬‭iETH‬‭and‬‭tETH‬‭contracts.‬‭We conducted the‬
‭following manual and automated reviews of these contracts:‬

‭○‬ ‭We reviewed the conversion of assets to shares to ensure they were‬
‭performed correctly‬

‭○‬ ‭We reviewed the use of access control modifiers to ensure that necessary‬
‭access controls are in place for privileged operations, this led to the‬
‭identification of issue (‬‭TOB-TETH-3‬‭) which allows‬‭users to directly convert‬
‭tETH tokens for iETH and potentially introducing errors in PnL accounting.‬

‭○‬ ‭We reviewed the deposit flow to ensure that users cannot lose funds through‬
‭theft or unintended locks.‬

‭○‬ ‭We reviewed the integration and interactions with external protocols to‬
‭ensure that the assumptions made do not introduce flaws in the system. Two‬
‭issues were identified in this regard (‬‭TOB-TETH-1‬‭)‬‭and (‬‭TOB-TETH-2‬‭).‬

‭●‬ ‭Redemption:‬‭Redemption requests are handled via the‬‭TreehouseRedemption‬
‭contract, after the minimum waiting period is passed, users can then proceed to‬
‭finalize the withdrawal process, at this point, the underlying ETH/WETH is‬
‭transferred to the user. We conducted a the following manual and automated‬
‭reviews of the contracts relevant to the redemption flow:‬

‭○‬ ‭We reviewed the access controls on the functions to ensure that only‬
‭privileged actors could update critical system values‬

‭○‬ ‭We reviewed the redemption finalization flow to ensure that waiting periods‬
‭could not be bypassed‬

‭○‬ ‭We reviewed the state changes that occur during the creation of redemption‬
‭requests, cancellations and finalizations to ensure consistency and the‬
‭possibility of re-entrances and replay attacks‬

‭●‬ ‭Accounting :‬‭The accounting mechanism employed by‬‭the tETH protocol involves‬
‭the use of two separate tokens,‬‭tETH‬‭a yield-bearing‬‭ERC-4626 vault token which‬

‭Trail of Bits‬ ‭10‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭represent shares and iETH an internal accounting unit representing the total value‬
‭in the vault and used for PnL calculation after harvest from strategies. We‬
‭conducted a the following manual and automated reviews of the contracts relevant‬
‭to the internal accounting:‬

‭○‬ ‭We reviewed the contract for flaws that would allow users to manipulate‬
‭share prices.‬

‭○‬ ‭We reviewed the interest accrual process to determine whether it is‬
‭vulnerable to front-running or sandwich attacks.‬

‭○‬ ‭We reviewed the arithmetic that is performed and the state changes that‬
‭occur during deposits, redemption requests, cancellations and finalizations‬
‭to identify any edge cases that may result in undefined behavior.‬

‭●‬ ‭Rate providers:‬‭The system relies on the rate provider‬‭contracts to query price‬
‭feeds and asset values, we conducted a manual review on these contracts to ensure‬
‭proper integration and data staleness checks, we found one issue related to this‬
‭(‬‭TOB-TETH-2‬‭)‬

‭●‬ ‭Strategies :‬‭The‬‭strategy‬‭folder consists of multiple‬‭contracts relating to‬
‭strategies and actions, we conducted a manual review on these components to‬
‭ensure general correctness‬‭and that the functions‬‭have the correct access controls‬
‭in place.‬

‭●‬ ‭Off-chain scripts:‬‭The system uses external programs‬‭that query the chain state‬
‭through a RPC provider, and can suggest and eventually execute rebalancing‬
‭operations to maintain the protocol strategy in a healthy state. We performed‬
‭automated and manual review of the code to check that its interaction with the‬
‭chain is correct and that it handles multiple states adequately. We identified several‬
‭issues in this component, including ones related to maintainability (‬‭TOB-TETH-4‬‭,‬
‭TOB-TETH-5‬‭), unsafe use of language functionality‬‭(‬‭TOB-TETH-6‬‭), the interaction with‬
‭the chain (‬‭TOB-TETH-8‬‭), and state analysis (‬‭TOB-TETH-7‬‭,‬‭TOB-TETH-9‬‭).‬

‭Coverage Limitations‬
‭Because of the time-boxed nature of testing work, it is common to encounter coverage‬
‭limitations. The following list outlines the coverage limitations of the engagement and‬
‭indicates system elements that may warrant further review:‬

‭●‬ ‭We did not extensively search for front-running vulnerabilities.‬

‭●‬ ‭We did not review the high-level economic incentives and disincentives imposed by‬
‭the system.‬

‭Trail of Bits‬ ‭11‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭●‬ ‭We did not review the off-chain arithmetic in depth, nor the associated strategy‬
‭logic, parameters, and its soundness in the context of the system. In particular, we‬
‭did not analyze the impact of performing floating-point arithmetic and the risk of‬
‭rounding errors it entails.‬

‭●‬ ‭In addition, the report does not include an integration found post review: the‬
‭TreehouseRedemption contract calls the WETH.withdraw function, but the‬
‭redemption contract is lacking a fallback or receive function. As a result WETH's‬
‭transfer will revert.‬

‭Trail of Bits‬ ‭12‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Automated Testing‬

‭Trail of Bits uses automated techniques to extensively test the security properties of‬
‭software. We use both open-source static analysis and fuzzing utilities, along with tools‬
‭developed in house, to perform automated testing of source code and compiled software.‬

‭Test Harness Configuration‬
‭We used the following to‬‭ols in the automated testing‬‭phase of this project:‬

‭●‬ ‭Slither‬‭: A static analysis framework that can statically‬‭verify algebraic relationships‬
‭between Solidity variables‬

‭●‬ ‭Medusa‬‭: A cross-platform‬‭go-ethereum‬‭-based smart contract‬‭fuzzer inspired by‬
‭Echidna‬

‭●‬ ‭Semgrep‬‭: An open-source static analysis tool for finding‬‭bugs and enforcing code‬
‭standards when editing or committing code and during build time‬

‭●‬ ‭CodeQL‬‭: A code analysis engine developed by GitHub‬‭to automate security checks‬

‭Test Results‬
‭The tables below summarizes the type, property conditions and result of each invariants‬
‭fuzzed on the smart contract codebase. We ran the fuzzer both locally and on the cloud.‬

‭Functional Invariants‬
‭We ran the following invariants using Medusa to test functions in the‬‭TreehouseRouter‬
‭and‬‭TreehouseRedemption‬‭contracts to ensure that they‬‭behave as expected. They‬
‭include checks of preconditions and postconditions expected to hold in the system.‬

‭ID‬ ‭Property‬ ‭Result‬

‭F-TETH-1‬ ‭stETH/wsETH/ETH balance of depositor should always‬
‭decrease after a deposit‬

‭Passed‬

‭F-TETH-2‬ ‭Vault’s stETH/wsETH/ETH balance should always increase‬
‭after a deposit‬

‭Passed‬

‭F-TETH-3‬ ‭Total supply of tETH should always increase after deposits‬ ‭Passed‬

‭F-TETH-5‬ ‭Depositor’s balance of tETH should always increase after a‬
‭deposit‬

‭Passed‬

‭Trail of Bits‬ ‭13‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/crytic/slither
https://github.com/crytic/medusa
https://github.com/ethereum/go-ethereum/
https://github.com/crytic/echidna
https://github.com/returntocorp/semgrep
https://codeql.github.com/

‭F-TETH-6‬ ‭Total supply of tETH should always decrease after redeem‬ ‭Passed‬

‭F-TETH-7‬ ‭User’s balance of tETH should always decrease after‬
‭redeem‬

‭Passed‬

‭F-TETH-8‬ ‭cancelRedeem should always increase the user’s tETH‬
‭balance‬

‭Passed‬

‭F-TETH-9‬ ‭finalizeRedeem should always increase user’s ETH/WETH‬
‭balance‬

‭Passed‬

‭F-TETH-10‬ ‭finalizeRedeem should always reduce vault’s ETH/WETH‬
‭balance‬

‭Passed‬

‭System Invariants‬
‭Using medusa, we also added system invariants that check the relationship between global‬
‭system states. These invariants test the relationships between variables in the contract.‬
‭Unlike functional invariants, these invariants should hold true regardless of the functions‬
‭that are executed.‬

‭ID‬ ‭Property‬ ‭Result‬

‭S-TETH-1‬ ‭Total ETH + WETH balance in the vault should never‬
‭exceed deposit cap‬

‭Passed‬

‭S-TETH-2‬ ‭Total supply of IETH should equal total asset value in vault‬ ‭Failed‬

‭S-TETH-3‬ ‭Redemption timelocks should not be bypassable‬ ‭Passed‬

‭S-TETH-4‬ ‭User with no access to ETH/WETH/wsETH should have no‬
‭tETH shares‬

‭Passed‬

‭S-TETH-5‬ ‭Users ETH/WETH balance should never exceed provided‬
‭amount‬

‭Passed‬

‭Trail of Bits‬ ‭14‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Codebase Maturity Evaluation‬

‭Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of‬
‭the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies‬
‭identified here often stem from root causes within the software development life cycle that‬
‭should be addressed through standardization measures (e.g., the use of common libraries,‬
‭functions, or frameworks) or training and awareness programs.‬

‭Category‬ ‭Summary‬ ‭Result‬

‭Arithmetic‬ ‭The protocol uses Solidity 0.8.24‬‭which has overflow‬
‭protection by default‬‭for arithmetic operations, and most‬
‭of the operations are documented with inline‬
‭documentation. Asset calculations rely on the‬
‭assumption that the dollar value of stETH would always‬
‭be equal to ETH, this could potentially introduce‬
‭accounting issues if stETH depegs.‬

‭The offchain code performs arithmetic using floating‬
‭point numbers, which may introduce precision errors.‬

‭Satisfactory‬

‭Auditing‬ ‭All functions involved in critical state-changing operations‬
‭emit events.‬‭The codebase uses a wide variety of‬
‭informative events and error messages, which are‬
‭emitted at appropriate locations.‬

‭The offchain components provide sufficient logs for‬
‭tracking their internal state.‬

‭Satisfactory‬

‭Authentication /‬
‭Access Controls‬

‭Most functions within the contracts are restricted by‬
‭access controls in place, permitting only privileged actors‬
‭to execute them. Users have limited control, primarily‬
‭restricted to deposits, creating and canceling redemption‬
‭requests, and finalizing redemptions. However, an issue‬
‭was identified due to the lack of access control on an‬
‭implicitly inherited function in the tETH contract‬
‭(‬‭TOB-TETH-3‬‭). Given the presence of multiple privileged‬
‭actors performing different roles, it would be beneficial‬
‭to document these roles and the actions they are‬
‭authorized to perform.‬

‭Moderate‬

‭Complexity‬
‭Management‬

‭The smart contract codebase contains a significant‬
‭number of contracts, however they are easy enough to‬

‭Moderate‬

‭Trail of Bits‬ ‭15‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭reason through and most of the complexity is left to be‬
‭handled by the strategy manager via the off-chain‬
‭components. Each contract in the protocol has a clear‬
‭purpose, and there are no signs of excessive inheritance‬
‭or high cyclomatic complexity. All functions are concise,‬
‭are well documented, have a clear purpose, and are‬
‭appropriately tested.‬

‭The off-chain codebase is also generally modularized and‬
‭separated into functions; however it contains multiple‬
‭instances of code duplication, commented-out code, and‬
‭special-casing, which reduce maintainability, readability,‬
‭and hamper reasoning about the code.‬

‭Configuration‬ ‭As the system is in development, a production‬
‭configuration is not yet available. The current‬
‭development configuration contains hard-coded keys,‬
‭which are not suitable for a production launch. The team‬
‭expressed that the off-chain component will gain support‬
‭for managing funds through a multi-signature setup‬
‭before launch.‬

‭Not‬
‭Considered‬

‭Cryptography‬
‭and Key‬
‭Management‬

‭The system does not perform cryptographic operations‬
‭directly on the off-chain component, and relies on‬
‭third-party libraries such as web3.py to perform‬
‭operations such as transaction signing. However,‬
‭multiple API and wallet keys are currently hardcoded in‬
‭the code or committed as part of the repository. There is‬
‭no implemented support for safe runtime provisioning of‬
‭secrets, e.g. via a secrets vault or password manager.‬

‭Weak‬

‭Data Handling‬ ‭The system generally validates the data it operates on.‬
‭We did however find some issues related to data‬
‭validation in the on-chain (‬‭TOB-TETH-2‬‭) and off-chain‬
‭(‬‭TOB-TETH-6‬‭,‬‭TOB-TETH-7‬‭) components.‬

‭Moderate‬

‭Decentralization‬ ‭The system's operations depend on certain privileged‬
‭actors manually executing essential tasks (via off-chain‬
‭executions). These tasks include operations related to‬
‭profit and loss distribution, user withdrawals, updating‬
‭state variables affecting user solvency and funds, and‬
‭managing investments and divestments. Due to the‬
‭extensible nature of the portfolio management system,‬
‭privileged actors can perform arbitrary actions.‬

‭Weak‬

‭Trail of Bits‬ ‭16‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Additionally, the Rescuable contract includes a provision‬
‭that allows the retrieval of any uninvested funds from the‬
‭Vault.‬

‭Documentation‬ ‭The code is generally well commented using natspec‬
‭style. The supplied documentation regarding the system‬
‭design, architecture and descriptions of the onchain and‬
‭offchain components were generally sufficient.‬

‭Strong‬

‭Low-Level‬
‭Manipulation‬

‭The use of double delegatecall in the strategy flow raises‬
‭concerns, as it could potentially lead to unintended‬
‭consequences, such as inadvertently corrupting storage‬
‭when more advanced strategies are developed. It is‬
‭advisable to establish guidelines for writing delegate calls‬
‭to prevent such issues. Additionally, the use of assembly‬
‭is currently limited to checking the return value of‬
‭delegate calls.‬

‭Moderate‬

‭Maintenance‬ ‭The off-chain code is organized into logical modules;‬
‭however, duplicated and commented-out code reduce‬
‭readability and hinder maintainability. The lack of unit‬
‭tests also make it difficult to introduce changes to the‬
‭system with confidence that they do not include‬
‭regressions or unexpected changes in behavior. The‬
‭system could also benefit from the use of tools such as‬
‭Dependabot in CI to automatically keep dependencies up‬
‭to date in the repository, as well as automated CI/CD‬
‭workflows to execute tests, perform static analysis and‬
‭enforce a coding style.‬

‭Weak‬

‭Memory Safety‬
‭and Error‬
‭Handling‬

‭The off-chain components are built using Python, which‬
‭is memory safe. Errors are generally checked and‬
‭handled appropriately.‬

‭Satisfactory‬

‭Testing and‬
‭Verification‬

‭The smart contract codebase contains several unit and‬
‭integration tests,‬‭these tests appear to cover most‬
‭common use cases of the protocol and test a fair number‬
‭of potential reverts or other scenarios outside of the‬
‭“happy path.”‬
‭However, there is no targeted fuzz testing of arithmetic‬
‭operations, invariants, or function properties.‬
‭Furthermore, there is no mutation testing.‬

‭These methodologies can expose unforeseen edge cases‬

‭Moderate‬

‭Trail of Bits‬ ‭17‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭or anomalies that regular testing might miss. Fuzzing‬
‭involves testing with random data inputs to trigger‬
‭unhandled exceptions or crashes, while mutation testing,‬
‭a method of code quality validation, alters the software‬
‭code in small ways to assess whether the test cases can‬
‭distinguish the original code from the mutated one.‬

‭These can help ensure the resistance of the application‬
‭against potential unusual inputs or behaviors.‬

‭The off-chain component is currently lacking unit testing.‬
‭While there is a “stress test” script that works as a sort of‬
‭fuzz test, fuzzing specific functionality could also prove‬
‭beneficial.‬

‭Transaction‬
‭Ordering‬

‭Yield aggregator protocols in general are vulnerable to‬
‭front-running issues especially during profit harvesting;‬
‭the codebase should undergo a more in-depth review to‬
‭find these vulnerabilities.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Trail of Bits‬ ‭18‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Summary of Findings‬

‭The table below summarizes the findings of the review, including type and severity details.‬

‭ID‬ ‭Title‬ ‭Type‬ ‭Severity‬

‭1‬ ‭Incorrect accounting logic for stETH deposits‬ ‭Data Validation‬ ‭Low‬

‭2‬ ‭Chainlink oracles could return stale price data‬ ‭Data Validation‬ ‭Informational‬

‭3‬ ‭Users can redeem tETH tokens to iETH‬ ‭Access Controls‬ ‭Informational‬

‭4‬ ‭Secrets checked into source code‬ ‭Data Exposure‬ ‭Low‬

‭5‬ ‭Use of outdated libraries‬ ‭Patching‬ ‭Informational‬

‭6‬ ‭Potential code execution through deserialization‬ ‭Data Validation‬ ‭High‬

‭7‬ ‭Overlapping and non-exhaustive conditions while‬
‭analyzing cases‬

‭Data Validation‬ ‭Undetermined‬

‭8‬ ‭Potentially duplicate event fetching‬ ‭Data Validation‬ ‭Informational‬

‭9‬ ‭Potentially misleading order comparison‬ ‭Data Validation‬ ‭Informational‬

‭Trail of Bits‬ ‭19‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Detailed Findings‬

‭1. Incorrect accounting logic for stETH deposits‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭Low‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-1‬

‭Target:‬‭contracts/TreehouseRouter.sol,‬
‭contracts/periphery/Converter.sol‬

‭Description‬
‭An edge case in the way stETH token transfers work may result in a small wei discrepancy‬
‭when depositing tokens via the‬‭TreehouseRouter‬‭contract‬‭or when converting stETH via‬
‭the‬‭Converter‬‭contract.‬

‭stETH is a rebasing token that updates daily to account for staking yield. To support this‬
‭behavior, the stETH contract tracks each user's shares of the overall pool of ether, which is‬
‭used to determine their balance of stETH tokens. When transferring tokens, the value is‬
‭first converted to shares, and it is these shares that are actually transferred from one‬
‭address to another. Converting between tokens and shares requires integer division that‬
‭may result in‬‭slightly fewer stETH tokens being transferred‬‭than expected‬‭.‬

‭The‬‭TreehouseRouter‬‭contract’s‬‭deposit‬‭function considers‬‭the ether value of the‬
‭deposited stETH to correspond to the‬‭amount‬‭value‬‭passed as a parameter. As a result, the‬
‭contract may then mint slightly more iETH tokens to the caller than they actually deposited.‬
‭The maximum size of this discrepancy is expected to grow over time as Lido continues to‬
‭grow and accrue staking rewards.‬

‭77‬ ‭function‬‭deposit‬‭(‬‭address‬‭_asset‬‭,‬‭uint256‬‭_amount‬‭)‬‭public‬‭nonReentrant‬
‭whenNotPaused‬‭{‬
‭78‬ ‭if‬‭(IVault(VAULT).isAllowableAsset(_asset)‬‭==‬‭false‬‭)‬‭revert‬
‭NotAllowableAsset();‬
‭79‬ ‭uint‬‭_valueInEth‬‭;‬
‭80‬
‭81‬ ‭if‬‭(_asset‬‭==‬‭stETH)‬‭{‬
‭82‬ ‭_valueInEth‬‭=‬‭_amount;‬
‭83‬
‭84‬ ‭IERC20(stETH).safeTransferFrom(‬‭msg.sender‬‭,‬‭address‬‭(‬‭this‬‭),‬‭_amount);‬
‭85‬ ‭uint‬‭wstethAmount‬‭=‬‭IwstETH(‬‭payable‬‭(wstETH)).wrap(_amount);‬
‭86‬ ‭IERC20(wstETH).transfer(VAULT,‬‭wstethAmount);‬
‭87‬ ‭}‬‭else‬‭if‬‭(_asset‬‭==‬‭wstETH)‬‭{‬
‭88‬ ‭_valueInEth‬‭=‬‭IwstETH(‬‭payable‬‭(wstETH)).getStETHByWstETH(_amount);‬

‭Trail of Bits‬ ‭20‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://docs.lido.fi/guides/lido-tokens-integration-guide/#1-2-wei-corner-case

‭89‬
‭90‬ ‭IERC20(wstETH).safeTransferFrom(‬‭msg.sender‬‭,‬‭VAULT,‬‭_amount);‬
‭91‬ ‭}‬‭else‬‭{‬
‭92‬ ‭_valueInEth‬‭=‬‭_getDepositInEth(_asset,‬‭_amount);‬
‭93‬ ‭IERC20(_asset).safeTransferFrom(‬‭msg.sender‬‭,‬‭VAULT,‬‭_amount);‬
‭94‬ ‭}‬
‭95‬
‭96‬ ‭_checkEthCap(_valueInEth);‬
‭97‬ ‭uint‬‭_shares‬‭=‬‭_mintAndStake(_valueInEth);‬
‭98‬ ‭emit‬‭Deposited(_asset,‬‭_amount,‬‭_valueInEth,‬‭_shares);‬
‭99 }‬

‭Figure 1.1: The deposit function from the‬‭TreehouseRouter‬‭contract‬
‭(‬‭tETH-protocol/contracts/TreehouseRouter.sol#L77–L99‬‭)‬

‭Exploit Scenario‬
‭Many users deposit stETH into the protocol which results in many instances of small‬
‭amounts of excess iETH being minted. Over time this tracking error may become large‬
‭enough to have a noticeable impact on PnL accounting or other unexpected side effects.‬

‭Recommendations‬
‭Short term, snapshot the contract's stETH balance before and after the‬
‭safeTransferFrom‬‭call and set‬‭_valueInEth‬‭and the‬‭value passed to‬‭wrap‬‭to the‬
‭difference in the balance to accurately reflect the amount of stETH that was actually taken‬
‭from the caller.‬

‭Long term, carefully review the Lido integration documentation and ensure all known edge‬
‭cases are accounted for when designing new features.‬

‭References‬
‭●‬ ‭Lido tokens integration guide‬

‭Trail of Bits‬ ‭21‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L77-L99
https://docs.lido.fi/guides/lido-tokens-integration-guide/

‭2. Chainlink oracles could return stale price data‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-2‬

‭Target:‬‭contracts/rate-providers/ChainlinkRateProvider.sol‬

‭Description‬
‭The‬‭latestRoundData()‬‭function from Chainlink oracles‬‭returns five values:‬‭roundId‬‭,‬
‭answer‬‭,‬‭startedAt‬‭,‬‭updatedAt‬‭, and‬‭answeredInRound‬‭.‬‭The‬‭ChainlinkRateProvider‬
‭contract reads only the‬‭answer‬‭value and discards‬‭the rest. This can cause outdated prices‬
‭to be used for token conversions.‬

‭45‬ ‭function‬‭getRate‬‭()‬‭external‬‭view‬‭override‬‭returns‬‭(‬‭uint256‬‭)‬‭{‬
‭46‬ ‭(,‬‭int256‬‭price‬‭,‬‭,‬‭,‬‭)‬‭=‬‭pricefeed.latestRoundData();‬
‭47‬ ‭require‬‭(price‬‭>‬‭0‬‭,‬‭'Invalid price rate response'‬‭);‬
‭48‬ ‭return‬‭uint256‬‭(price)‬‭*‬‭_scalingFactor;‬
‭49 }‬

‭Figure 2.1: All returned data other than the‬‭answer‬‭value is ignored during the call to a‬
‭Chainlink feed’s‬‭latestRoundData‬‭method.‬

‭(‬‭tETH-protocol/contracts/rate-providers/ChainlinkRateProvider.sol#L45–L49‬
‭)‬

‭According to the‬‭Chainlink documentation‬‭, if the‬‭latestRoundData()‬‭function is used,‬
‭the‬‭updatedAt‬‭value should be checked to ensure that‬‭the returned value is recent‬
‭enough for the application.‬

‭Recommendations‬
‭Short term, make sure that the oracle queries check for up-to-date data and revert or‬
‭return a sentinel value (e.g., 0) to indicate stale data.‬

‭Long term, review the documentation for Chainlink and other oracle integrations to ensure‬
‭that all of the security requirements are met to avoid potential issues, and add tests that‬
‭take these possible situations into account.‬

‭Trail of Bits‬ ‭22‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/rate-providers/ChainlinkRateProvider.sol#L45-L49
https://docs.chain.link/data-feeds#check-the-timestamp-of-the-latest-answer

‭3. Users can redeem tETH tokens to iETH‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Low‬

‭Type: Access Controls‬ ‭Finding ID: TOB-TETH-3‬

‭Target:‬‭Contracts/tETH.sol‬

‭Description‬
‭The tETH contract exposes the‬‭withdraw‬‭and‬‭redeem‬‭functions from the inherited‬
‭ERC4626 token contract, this allows any user to redeem their tETH tokens for iETH.‬

‭iETH tokens are minted purely for accounting purposes, during deposits, the iETH token is‬
‭minted equivalent to the ETH value of the amount of asset deposited and burned during‬
‭the finalization of redemption. The iETH token is also used in estimating total profit or loss‬
‭accrued over a period of time and then is rebased to maintain a 1:1 peg between tETH and‬
‭ETH. Ideally the total supply of iETH should be held in the tETH contract since it represents‬
‭the total share value.‬

‭However, due to the absence of access controls on the inherited‬‭withdraw‬‭and‬‭redeem‬
‭functions in the tETH contract, users can directly convert their tETH tokens to iETH,‬
‭although iETH cannot be directly converted to ETH within the protocol, this action could‬
‭lead to unintended side effects like potentially introducing accounting miscalculations‬
‭(depending on how pnl accounting is performed on the offchain side) or possible‬
‭frontrunning/backrunning attacks.‬

‭210‬ ‭function‬‭redeem‬‭(‬‭uint256‬‭shares‬‭,‬‭address‬‭receiver‬‭,‬‭address‬‭owner‬‭)‬‭public‬
‭virtual‬‭returns‬‭(‬‭uint256‬‭)‬‭{‬
‭211‬ ‭uint256‬‭maxShares‬‭=‬‭maxRedeem(owner);‬
‭212‬ ‭if‬‭(shares‬‭>‬‭maxShares)‬‭{‬
‭213‬ ‭revert‬‭ERC4626ExceededMaxRedeem(owner,‬‭shares,‬‭maxShares);‬
‭214‬ ‭}‬
‭215‬
‭216‬ ‭uint256‬‭assets‬‭=‬‭previewRedeem(shares);‬
‭217‬ ‭_withdraw(_msgSender(),‬‭receiver,‬‭owner,‬‭assets,‬‭shares);‬
‭218‬
‭219‬ ‭return‬‭assets;‬
‭220 }‬

‭Figure 3.1: Invokable redeem function in the OZ ERC4626 token contract implementation.‬

‭Trail of Bits‬ ‭23‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Recommendations‬
‭Short term, consider adding access controls on the inherited redeem and withdraw‬
‭functions within the tETH contract in order to revoke direct access or allow only specific‬
‭users access.‬

‭Long term, carefully review all public and external functions within imported‬
‭libraries/dependencies and add proper access controls on functions that should not be‬
‭invoked directly by users.‬

‭Trail of Bits‬ ‭24‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭4. Secrets checked into source code‬

‭Severity:‬‭Low‬ ‭Difficulty:‬‭High‬

‭Type: Data Exposure‬ ‭Finding ID: TOB-TETH-4‬

‭Target:‬‭tETH-offchain/utils/web3_func.py‬‭,‬
‭tETH-offchain/src/env_handler/fork_blockchain.py‬‭,‬
‭tETH-offchain/config/thirdparty_config/strat_config_thirdparty.yml‬‭,‬
‭tETH-offchain/config/deploy_config/strat_config_deploy.yml‬

‭Description‬
‭Several secrets, including API keys and Ethereum private keys, are checked into the source‬
‭code repository and present in the Git history. If attackers have access to the application‬
‭source code, they would have access to said secrets. Additionally, checking the shared‬
‭secret into the source code repository gives all employees and contractors with access to‬
‭the repository access to the secrets. Secret values such as API keys and Ethereum private‬
‭keys should never be stored in plaintext in source code repositories, as they can become‬
‭valuable tools to attackers if the repository is compromised. The figures below show a few‬
‭samples of the identified secrets, but these are not an exhaustive list.‬

‭"eth"‬‭:‬
‭f‬‭"https://api.etherscan.io/api?module=contract&action=getabi&address=‬‭{‬‭cid‬‭}‬‭&apikey=‬‭RE‬
‭DACTED_KEY‬‭"‬‭,‬

‭Figure 4.1: Example Etherscan API key present in the repository‬
‭(‬‭tETH-offchain/utils/web3_func.py‬‭)‬

‭DEFAULT_RPC_URL =‬‭"https://mainnet.infura.io/v3/‬‭REDACTED_KEY‬‭"‬

‭Figure 4.2: Example Infura key present in the codebase‬
‭(‬‭tETH-offchain/src/env_handler/fork_blockchain.py‬‭)‬

‭DEPLOYER_PRIVATE_KEY:‬‭'0xREDACTED'‬
‭PREFERRED_NODE_URL: https://rpc.buildbear.io/‬‭REDACTED‬

‭Figure 4.3: Example private key and Buildbear key‬
‭(‬‭tETH-offchain/config/deploy_config/strat_config_deploy.yml‬‭)‬

‭The severity has been marked as low, as the system is not yet in production and these keys‬
‭correspond to testing instances.‬

‭Trail of Bits‬ ‭25‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Exploit Scenario‬
‭An attacker obtains a copy of the source code from a former employee. She extracts the‬
‭API keys for Etherscan and the Ethereum node RPC and performs multiple requests,‬
‭causing increased monetary expenses for the Treehouse team, or a denial of service due to‬
‭quota exhaustion when the Treehouse portfolio manager attempts to run the off-chain‬
‭components. She also extracts the deployer private key and performs unauthorized‬
‭operations on-chain with it.‬

‭Recommendations‬
‭Short term, remove the hard-coded secrets from source code and rotate their values.‬

‭Long term, consider storing the secrets in a secret management solution such as‬
‭1Password or Hashicorp Vault. Use tools such as‬‭Trufflehog‬‭on your CI/CD pipeline to‬
‭detect secrets mistakenly committed to the repository.‬

‭References‬
‭●‬ ‭GitHub: Removing sensitive data from a repository‬

‭Trail of Bits‬ ‭26‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/trufflesecurity/trufflehog
https://help.github.com/articles/removing-sensitive-data-from-a-repository/

‭5. Use of outdated libraries‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Patching‬ ‭Finding ID: TOB-TETH-5‬

‭Target:‬‭tETH-offchain/requirements.txt‬

‭Description‬
‭We used‬‭pip audit‬‭to detect the use of outdated dependencies‬‭in the offchain codebase,‬
‭which identified a number of vulnerable packages referenced by the‬‭requirements.txt‬‭.‬

‭The following is a list of the vulnerable dependencies used in the offchain codebase, and‬
‭known vulnerabilities that affect the versions currently used by the codebase:‬

‭●‬ ‭aiohttp‬‭(PYSEC-2024-24, PYSEC-2023-250, PYSEC-2023-251,‬‭PYSEC-2024-26,‬
‭GHSA-7gpw-8wmc-pm8g, GHSA-5m98-qgg9-wh84)‬

‭●‬ ‭certifi‬‭(GHSA-248v-346w-9cwc)‬
‭●‬ ‭eth-abi‬‭(GHSA-3qwc-47jf-5rf7)‬
‭●‬ ‭idna‬‭(PYSEC-2024-60)‬
‭●‬ ‭requests‬‭(GHSA-9wx4-h78v-vm56)‬
‭●‬ ‭urllib3‬‭(GHSA-34jh-p97f-mpxf)‬

‭In many cases, the use of a vulnerable dependency does not necessarily mean the‬
‭application is vulnerable. Vulnerable methods from such packages need to be called within‬
‭a particular (exploitable) context. To determine whether the offchain applications are‬
‭vulnerable to these issues, each issue will have to be manually triaged. The severity is‬
‭marked informational as upon preliminary inspection, these issues do not appear to‬
‭impact the offchain codebase.‬

‭Recommendations‬
‭Short term, update system dependencies to their latest versions wherever possible. Use‬
‭tools such as‬‭pip‬‭audit‬‭to confirm that no vulnerable‬‭dependencies remain.‬

‭Long term, implement these checks as part of the CI/CD pipeline of application‬
‭development. Integrate an automated solution such as Dependabot into your development‬
‭process to assist in promptly detecting and updating dependencies with known security‬
‭problems.‬

‭Trail of Bits‬ ‭27‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭6. Potential code execution through deserialization‬

‭Severity:‬‭High‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-6‬

‭Target:‬‭tETH-offchain/utils/web3_func.py‬

‭Description‬
‭The offchain codebase loads contract ABIs from files and deserializes them into Python‬
‭objects through the‬‭pickle.load‬‭function. If any of‬‭this data comes from untrusted input‬
‭controlled by an attacker, this can lead to remote code execution (since‬‭pickle can execute‬
‭arbitrary code that would be encoded within the data‬‭).‬

‭def‬‭load_contract_abi‬‭(chain:‬‭str‬‭, address:‬‭str‬‭):‬
‭# (...)‬
‭file_name =‬‭f‬‭"abi_‬‭{‬‭chain‬‭}‬‭_‬‭{‬‭address‬‭}‬‭.pkl"‬
‭file_path = os.path.join(ABI_DIR, file_name)‬

‭if‬‭os.path.isfile(file_path):‬
‭with‬‭open‬‭(file_path,‬‭"rb"‬‭)‬‭as‬‭f:‬

‭abi =‬‭pickle.load(f)‬
‭return‬‭abi‬

‭else‬‭:‬
‭msc_logger.error(‬‭f‬‭"Cannot find abi file locally‬‭for‬‭{‬‭address‬‭}‬‭"‬‭)‬
‭raise‬‭Exception‬‭(‬‭f‬‭"Cannot find abi file locally‬‭for‬‭{‬‭address‬‭}‬‭"‬‭)‬

‭Figure 6.1: The data is loaded and deserialized using‬‭pickle.load‬
‭(‬‭tETH-offchain/utils/web3_func.py‬‭)‬

‭While these files appear to be generated from the program itself during execution as a sort‬
‭of caching mechanism, there is no validation performed to ensure that they are‬
‭trustworthy and have not been tampered with.‬

‭Exploit Scenario‬
‭An attacker with access to the code repository or the portfolio manager’s computer‬
‭replaces one of the pickle files with a malicious copy that, when loaded, patches the‬
‭executing code to silently modify the on-chain transactions generated by the program.‬
‭When the portfolio manager executes the offchain code and the pickle file gets loaded, the‬
‭process produces malicious transactions, leading to unexpected system state or a loss of‬
‭funds.‬

‭Trail of Bits‬ ‭28‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.
https://docs.python.org/3/library/pickle.html#:~:text=The%20pickle%20module%20is%20not%20secure.%20Only%20unpickle%20data%20you%20trust.

‭Recommendations‬
‭Short term, consider using a different data file format that is not prone to the same‬
‭vulnerabilities (e.g., JSON). If pickle files are essential to the system, ensure that all pickle‬
‭files come from trusted sources and are explicitly reviewed. If possible, consider signing the‬
‭pickle file to ensure that unreviewed pickle files are not executed by the system.‬
‭Additionally, add relevant code comments to inform future reviewers that the specific use‬
‭is safe.‬

‭References‬
‭●‬ ‭Never a dill moment: Exploiting machine learning pickle files‬

‭Trail of Bits‬ ‭29‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/

‭7. Overlapping and non-exhaustive conditions while analyzing cases‬

‭Severity:‬‭Undetermined‬ ‭Difficulty:‬‭High‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-7‬

‭Target:‬‭tETH-offchain/utils/print_func.py‬

‭Description‬
‭The codebase has a‬‭printAnalysisResult‬‭function that‬‭interprets a value in the context‬
‭of a set of bounds and thresholds and returns an identifier for each type of state. This‬
‭identifier is sometimes used by the caller to determine if further actions need to be taken.‬
‭However, the function’s implementation does not exhaustively cover all possibilities for the‬
‭“crossing up” case, and checks overlapping cases on the “crossing down” case. This could‬
‭eventually result in a misinterpretation of the data being shown or used.‬

‭For the “crossing up” case, assuming‬‭lower_bound <=‬‭upper_bound <= threshold‬‭, we‬
‭can see in figure 7.1 that the first conditional covers the‬‭[lower_bound, upper_bound]‬
‭range‬‭(1)‬‭, the second conditional covers the‬‭(-inf,‬‭lower_bound)‬‭range‬‭(2)‬‭, the third‬
‭conditional covers the‬‭(upper_bound, threshold)‬‭value‬‭(3)‬‭, and the fourth conditional‬
‭covers the‬‭(threshold, +inf)‬‭range‬‭(4)‬‭. When combined,‬‭these ranges cover the majority‬
‭of the values, with the exception of the threshold value itself.‬

‭if‬‭threshold_type ==‬‭"crossing_up"‬‭:‬
‭if‬‭lower_bound <= value <= upper_bound:‬‭# (1)‬

‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_1‬‭}‬‭]‬‭{‬‭metric_name‬‭}‬‭is within the bounds."‬‭)‬
‭# alert = f"metric_name_{LVL_1}"‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_1‬‭}‬‭_within_bounds"‬

‭elif‬‭value < lower_bound:‬‭# (2)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_2‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is below lower bound."‬‭)‬
‭# action needed‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_2‬‭}‬‭_below_lower"‬

‭elif‬‭upper_bound < value < threshold:‬‭# (3)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_2‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is above upper bound."‬‭)‬
‭# manager decision‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_2‬‭}‬‭_above_upper"‬

‭elif‬‭value > threshold:‬‭# (4)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_3‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is above threshold level."‬‭)‬
‭# action needed‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_3‬‭}‬‭_above_thres"‬

‭Figure 7.1: The “crossing up” logic in‬‭printAnalysisResult‬
‭(‬‭tETH-offchain/utils/print_func.py‬‭)‬

‭Trail of Bits‬ ‭30‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭This means that, if‬‭value‬‭is equal to‬‭threshold‬‭,‬‭alert_level‬‭will not be set and nothing‬
‭will be logged, which is likely not intentional.‬

‭In the “crossing down” case, assuming‬‭threshold <=‬‭lower_bound <= upper_bound‬‭,‬
‭we can see in figure 7.2 that the first conditional covers the‬‭[lower_bound,‬
‭upper_bound]‬‭case‬‭(1)‬‭, the second conditional covers‬‭the‬‭(-inf, lower_bound)‬‭range‬‭(2)‬‭,‬
‭the third conditional covers the‬‭(upper_bound, +inf)‬‭range‬‭(3)‬ ‭and the fourth‬
‭conditional‬‭(4)‬ ‭is dead code – any such cases will‬‭be covered by‬‭(2)‬ ‭already, as‬‭threshold <=‬
‭lower_bound‬‭).‬

‭elif‬‭threshold_type ==‬‭"crossing_down"‬‭:‬
‭if‬‭lower_bound <= value <= upper_bound:‬‭# (1)‬

‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_1‬‭}‬‭]‬‭{‬‭metric_name‬‭}‬‭is within the bound."‬‭)‬
‭# no action needed‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_1‬‭}‬‭_within_bounds"‬

‭elif‬‭value < lower_bound:‬‭# (2)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_3‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is below lower bound."‬‭)‬
‭# action needed‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_3‬‭}‬‭_below_lower"‬

‭elif‬‭upper_bound < value:‬‭# (3)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_2‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is above upper bound."‬‭)‬
‭# manager decision‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_2‬‭}‬‭_above_upper"‬

‭elif‬‭value < threshold:‬‭# (4)‬
‭sta_logger.info(‬‭f‬‭"[‬‭{‬‭LVL_3‬‭}‬‭]‬ ‭{‬‭metric_name‬‭}‬‭is below threshold level."‬‭)‬
‭# action needed‬
‭alert_level =‬‭f‬‭"‬‭{‬‭LVL_3‬‭}‬‭_below_thres"‬

‭Figure 7.2: The “crossing down” logic in‬‭printAnalysisResult‬
‭(‬‭tETH-offchain/utils/print_func.py‬‭)‬

‭This means that the threshold alert will never trigger on the “crossing down” case, which is‬
‭unlikely to be the intended behavior.‬

‭Recommendations‬
‭Short term, adjust the conditionals so that they cover the expected ranges and work as‬
‭intended. Document the relationship between threshold, lower and upper bound values.‬
‭Write unit tests for this function to ensure it continues to behave as intended.‬

‭Long term, enhance the testing suite of off-chain components to verify functions perform‬
‭as expected. implement automated runs of said tests as part of the CI/CD pipeline of‬
‭application development.‬

‭Trail of Bits‬ ‭31‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭8. Potentially duplicate event fetching‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-8‬

‭Target:‬‭tETH-offchain/utils/pool_func.py‬

‭Description‬
‭The codebase has a‬‭getPoolEvents‬‭function that is‬‭currently used to collect Lido’s‬
‭TokenRebased‬‭events from the chain. This function‬‭repeatedly queries the RPC for any‬
‭events between a series of blocks, combines them into a single list, and returns the‬
‭information. However, the function may collect and return the same event more than once,‬
‭which can be unexpected and may skew the results of, for instance, the Lido staking APR‬
‭SMA.‬

‭start = _start_block‬
‭end = _end_block‬‭if‬‭_end_block‬‭is‬‭not‬‭None‬‭else‬‭web3.eth.get_block_number()‬
‭event_list = []‬
‭step = (end - start) // delta‬

‭for‬‭i‬‭in‬‭range‬‭(‬‭0‬‭, step +‬‭1‬‭,‬‭1‬‭):‬
‭sBlock = start + i * delta‬
‭eBlock = sBlock + delta‬
‭# (...) get the events in blocks [sBlock, min(eBlock,‬‭end)]‬

‭Figure 8.1: The logic used to split a large block range into smaller ones‬
‭(‬‭tETH-offchain/utils/pool_func.py‬‭)‬

‭The function will perform a series of queries that each span a‬‭delta‬‭amount of blocks. The‬
‭end block used on a query will be the start block of the following query. However, the RPC‬
‭queries used to fetch the logs take an inclusive‬‭[fromBlock,‬‭toBlock]‬‭range, as seen on‬
‭the‬‭implementation by Go Ethereum‬‭and on‬‭ethers.js‬‭documentation‬‭. This means that any‬
‭events that happen on a block number that is on the edge of a query will be received twice.‬

‭For example, for a delta of 49999, a start block of 10000 and end of 109998, the code will‬
‭query the ranges‬‭[10000, 59999]‬‭,‬‭[59999, 109998]‬‭,‬‭[109998, 109998]‬‭. Any events‬
‭on blocks 59999 and 109998 will be duplicated.‬

‭Recommendations‬
‭Short term, verify this behavior with your RPC provider and update the code to not query‬
‭events on the same block twice.‬‭Anecdotal evidence‬‭on the Internet‬‭suggests this behavior‬
‭may vary on other RPC implementations. Alternatively, deduplicate events based on unique‬

‭Trail of Bits‬ ‭32‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/ethereum/go-ethereum/blob/v1.14.7/eth/filters/filter.go#L319-L324
https://docs.ethers.org/v5/api/providers/types/#providers-Filter
https://ethereum.stackexchange.com/questions/8199/are-both-the-eth-newfilter-from-to-fields-inclusive#comment162776_8219

‭data such as their transaction hash. Add unit tests to ensure that the function behaves as‬
‭expected on edge cases such as this one.‬

‭Long term, review the documentation when integrating with third-party libraries and‬
‭services and be aware of their specific behavior on edge cases.‬

‭Trail of Bits‬ ‭33‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭9. Potentially misleading order comparison‬

‭Severity:‬‭Informational‬ ‭Difficulty:‬‭Undetermined‬

‭Type: Data Validation‬ ‭Finding ID: TOB-TETH-9‬

‭Target:‬‭tETH-offchain/src/execution/analyze_execution.py‬

‭Description‬
‭The codebase has a‬‭compare_order‬‭function that is‬‭used to compare an on-chain‬
‭(simulated) order with an off-chain suggestion. According to the function documentation, if‬
‭the on-chain order value matches, within a certain tolerance, the value computed for the‬
‭off-chain suggestion, the function returns true, otherwise it returns false. However, the‬
‭implementation will also always return true if the on-chain order has not yet been‬
‭simulated, irrespective of the order value, which could be unexpected and misleading.‬

‭This behavior is documented with a TODO comment in the implementation code, as shown‬
‭on figure 9.1.‬

‭isSimulated = onchain_order[‬‭"isSimulated"‬‭]‬

‭# TODO: The logic here need to be updated.‬
‭# Technically the unsimulated order should not reach here. But the current logic‬
‭# may reach here. So I just keep this first, avoiding affecting the whole script.‬
‭if‬‭isSimulated:‬

‭# (...) perform the comparison and return True‬‭or False‬
‭else‬‭:‬

‭return‬‭True‬

‭Figure 9.1: The logic used to handle unsimulated orders‬
‭(‬‭tETH-offchain/src/execution/analyze_execution.py‬‭)‬

‭Recommendations‬
‭Short term, update the function to throw an error or return false or a different sentinel‬
‭value if comparing unsimulated orders is unacceptable. Correct any calling code paths to‬
‭ensure no unsimulated orders reach this function. Add a test to ensure unsimulated orders‬
‭are identified and handled correctly.‬

‭Long term, document any specific requirements in the function documentation, so that‬
‭users are aware of such caveats. Follow the principle of least astonishment when‬
‭implementing helper functions.‬

‭Trail of Bits‬ ‭34‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭A. Vulnerability Categories‬

‭The following tables describe the vulnerability categories, severity levels, and difficulty‬
‭levels used in this document.‬

‭Vulnerability Categories‬

‭Category‬ ‭Description‬

‭Access Controls‬ ‭Insufficient authorization or assessment of rights‬

‭Auditing and Logging‬ ‭Insufficient auditing of actions or logging of problems‬

‭Authentication‬ ‭Improper identification of users‬

‭Configuration‬ ‭Misconfigured servers, devices, or software components‬

‭Cryptography‬ ‭A breach of system confidentiality or integrity‬

‭Data Exposure‬ ‭Exposure of sensitive information‬

‭Data Validation‬ ‭Improper reliance on the structure or values of data‬

‭Denial of Service‬ ‭A system failure with an availability impact‬

‭Error Reporting‬ ‭Insecure or insufficient reporting of error conditions‬

‭Patching‬ ‭Use of an outdated software package or library‬

‭Session Management‬ ‭Improper identification of authenticated users‬

‭Testing‬ ‭Insufficient test methodology or test coverage‬

‭Timing‬ ‭Race conditions or other order-of-operations flaws‬

‭Undefined Behavior‬ ‭Undefined behavior triggered within the system‬

‭Trail of Bits‬ ‭35‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Severity Levels‬

‭Severity‬ ‭Description‬

‭Informational‬ ‭The issue does not pose an immediate risk but is relevant to security best‬
‭practices.‬

‭Undetermined‬ ‭The extent of the risk was not determined during this engagement.‬

‭Low‬ ‭The risk is small or is not one the client has indicated is important.‬

‭Medium‬ ‭User information is at risk; exploitation could pose reputational, legal, or‬
‭moderate financial risks.‬

‭High‬ ‭The flaw could affect numerous users and have serious reputational, legal,‬
‭or financial implications.‬

‭Difficulty Levels‬

‭Difficulty‬ ‭Description‬

‭Undetermined‬ ‭The difficulty of exploitation was not determined during this engagement.‬

‭Low‬ ‭The flaw is well known; public tools for its exploitation exist or can be‬
‭scripted.‬

‭Medium‬ ‭An attacker must write an exploit or will need in-depth knowledge of the‬
‭system.‬

‭High‬ ‭An attacker must have privileged access to the system, may need to know‬
‭complex technical details, or must discover other weaknesses to exploit this‬
‭issue.‬

‭Trail of Bits‬ ‭36‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭B. Code Maturity Categories‬

‭The following tables describe the code maturity categories and rating criteria used in this‬
‭document.‬

‭Code Maturity Categories‬

‭Category‬ ‭Description‬

‭Arithmetic‬ ‭The proper use of mathematical operations and semantics‬

‭Auditing‬ ‭The use of event auditing and logging to support monitoring‬

‭Authentication /‬
‭Access Controls‬

‭The use of robust access controls to handle identification and‬
‭authorization and to ensure safe interactions with the system‬

‭Complexity‬
‭Management‬

‭The presence of clear structures designed to manage system complexity,‬
‭including the separation of system logic into clearly defined functions‬

‭Configuration‬ ‭The configuration of system components in accordance with best‬
‭practices‬

‭Cryptography and‬
‭Key Management‬

‭The safe use of cryptographic primitives and functions, along with the‬
‭presence of robust mechanisms for key generation and distribution‬

‭Data Handling‬ ‭The safe handling of user inputs and data processed by the system‬

‭Decentralization‬ ‭The presence of a decentralized governance structure for mitigating‬
‭insider threats and managing risks posed by contract upgrades‬

‭Documentation‬ ‭The presence of comprehensive and readable codebase documentation‬

‭Low-Level‬
‭Manipulation‬

‭The justified use of inline assembly and low-level calls‬

‭Maintenance‬ ‭The timely maintenance of system components to mitigate risk‬

‭Memory Safety‬
‭and Error Handling‬

‭The presence of memory safety and robust error-handling mechanisms‬

‭Testing and‬
‭Verification‬

‭The presence of robust testing procedures (e.g., unit tests, integration‬
‭tests, and verification methods) and sufficient test coverage‬

‭Transaction‬
‭Ordering‬

‭The system’s resistance to transaction-ordering attacks‬

‭Trail of Bits‬ ‭37‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭Rating Criteria‬

‭Rating‬ ‭Description‬

‭Strong‬ ‭No issues were found, and the system exceeds industry standards.‬

‭Satisfactory‬ ‭Minor issues were found, but the system is compliant with best practices.‬

‭Moderate‬ ‭Some issues that may affect system safety were found.‬

‭Weak‬ ‭Many issues that affect system safety were found.‬

‭Missing‬ ‭A required component is missing, significantly affecting system safety.‬

‭Not Applicable‬ ‭The category is not applicable to this review.‬

‭Not Considered‬ ‭The category was not considered in this review.‬

‭Further‬
‭Investigation‬
‭Required‬

‭Further investigation is required to reach a meaningful conclusion.‬

‭Trail of Bits‬ ‭38‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭C. Code Quality Recommendations‬

‭The following recommendations are not associated with any specific vulnerabilities.‬
‭However, they will enhance code readability and may prevent the introduction of‬
‭vulnerabilities in the future.‬

‭●‬ ‭There are many instances where an if statement is compared against the Boolean‬
‭true‬‭or‬‭false‬‭directly. The comparison to‬‭true‬‭or‬‭false‬‭values can be dropped to‬
‭simplify the code.‬

‭78‬ ‭if‬‭(IVault(VAULT).isAllowableAsset(_asset)‬‭==‬‭false‬‭)‬‭revert‬
‭NotAllowableAsset();‬

‭Figure C.1: An example of an if statement with an unnecessary Boolean comparison.‬
‭(‬‭tETH-protocol/contracts/TreehouseRouter.sol#78‬‭)‬

‭●‬ ‭The variable names of the constants of the‬‭MainnetLidoAddresses‬‭contract do‬
‭not follow the‬‭ALL_CAPS‬‭naming convention for constant‬‭values.‬

‭●‬ ‭There are several instances of unchecked blocks being used to manually optimize‬
‭simple loop increments. As these contracts specify Solidity 0.8.24, they benefit from‬
‭the built-in optimization‬‭added in version 0.8.22‬‭that automatically optimizes this as‬
‭part of the compiling process, rendering these‬‭unchecked‬‭blocks redundant.‬

‭101‬ ‭function‬‭whitelistActions‬‭(‬‭uint‬‭_strategyId‬‭,‬‭bytes4[]‬‭calldata‬
‭_whitelistedActions)‬‭external‬‭onlyOwner‬‭{‬
‭102‬ ‭for‬‭(‬‭uint‬‭i‬‭;‬‭i‬‭<‬‭_whitelistedActions.length;‬‭)‬‭{‬
‭103‬ ‭if‬
‭(parameters[_safeGetStrategyAddress(_strategyId)].whitelistedActions.add(_whiteliste‬
‭dActions[i])‬‭==‬‭false‬‭)‬
‭104‬ ‭revert‬‭AlreadyExist();‬
‭105‬
‭106‬ ‭emit‬‭ActionWhitelisted(_whitelistedActions[i]);‬
‭107‬
‭108‬ ‭unchecked‬‭{‬
‭109‬ ‭++i;‬
‭110‬ ‭}‬
‭111‬ ‭}‬
‭112 }‬

‭Figure C.2: An example of an unnecessary‬‭unchecked‬‭block.‬
‭(‬‭tETH-protocol/contracts/strategy/StrategyStorage.sol#101–112‬‭)‬

‭●‬ ‭There are large amounts of commented-out code on the offchain codebase. If the‬
‭code is no longer needed, it should be removed to improve readability and‬
‭maintainability.‬

‭Trail of Bits‬ ‭39‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/TreehouseRouter.sol#L78-L78
https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://github.com/treehouse-gaia/tETH-protocol/blob/02c3ab1fafa7610ba43fc3cc905ccad504b39cf3/contracts/strategy/StrategyStorage.sol#L101-L112

‭●‬ ‭The offchain codebase contains several blocks of code that are duplicated several‬
‭times with minimal changes, for example in the‬‭validate_order‬‭function. Such‬
‭code should be refactored to improve maintainability and readability.‬

‭●‬ ‭Multiple files in the offchain codebase contain code that adjusts‬‭sys.path‬‭in‬
‭runtime. The code should be reorganized to make proper use of packages and‬
‭modules, and a way to install the solution should be added to the repository.‬

‭●‬ ‭The offchain codebase contains multiple magic values hardcoded throughout the‬
‭files, a few examples are shown below. These should be either converted to‬
‭constants or moved to the configuration files. Some don’t match the documentation‬
‭that accompanies them (e.g., in figure C.4 it says 20% but calculates 30% instead).‬

‭tolerance =‬‭1‬‭/‬‭100‬ ‭# 1% slippage‬

‭Figure C.3: A hardcoded tolerance value‬
‭(‬‭tETH-offchain/src/execution/analyze_execution.py#112‬‭)‬

‭STAKE_RATE_LOWER = STAKE_RATE_THRES *‬‭1.05‬ ‭# 5% higher‬‭than borrow rate‬
‭STAKE_RATE_UPPER = STAKE_RATE_THRES *‬‭1.3‬ ‭#‬‭20%‬‭higher‬‭than borrow rate‬

‭Figure C.4: Hardcoded lower and upper percentage bounds‬
‭(‬‭tETH-offchain/src/state_handler/analyze_state.py#139–140‬‭)‬

‭●‬ ‭The‬‭fork_blockchain‬‭function currently sleeps for‬‭10 seconds while‬‭anvil‬‭starts‬
‭and the forked chain becomes usable. This could be improved and made more‬
‭reliable by performing a health check of the forked chain instead.‬

‭Trail of Bits‬ ‭40‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭D. Automated Static Analysis‬

‭This appendix describes the setup of the automated analysis tools used during this audit‬
‭for the off-chain components.‬

‭Though static analysis tools frequently report false positives, they detect certain categories‬
‭of issues, such as memory leaks, misspecified format strings, and the use of unsafe APIs,‬
‭with essentially perfect precision. We recommend periodically running these static analysis‬
‭tools and reviewing their findings.‬

‭Semgrep‬
‭To install Semgrep, we used‬‭pip‬‭by running‬‭python3‬‭-m‬‭pip‬‭install‬‭semgrep‬‭.‬

‭To run Semgrep on the codebase, we ran the following command in the root directory of‬
‭the project (running multiple predefined rules simultaneously by providing multiple‬
‭--config‬‭arguments):‬

‭semgrep‬‭--config‬‭"p/trailofbits"‬‭--config‬‭"p/ci"‬‭--config‬‭"p/python"‬
‭--config‬‭"p/security-audit"‬‭--metrics=off‬

‭We also used‬‭semgrep-rules-manager‬‭to fetch and run‬‭other third-party rules.‬

‭We recommend integrating Semgrep into the project’s CI/CD pipeline. To thoroughly‬
‭understand the Semgrep tool, refer to the‬‭Trail of‬‭Bits Testing Handbook‬‭, where we aim to‬
‭streamline the use of Semgrep and improve security testing effectiveness. Also, consider‬
‭doing the following:‬

‭●‬ ‭Limit results to error severity only by using the‬‭--severity‬‭ERROR‬‭flag.‬

‭●‬ ‭Focus first on rules with high confidence and medium- or high-impact metadata.‬

‭●‬ ‭Use the SARIF format (by using the‬‭--sarif‬‭Semgrep‬‭argument) with the‬‭SARIF‬
‭Viewer for Visual Studio Code‬‭extension. This will‬‭make it easier to review the‬
‭analysis results and drill down into specific issues to understand their impact and‬
‭severity.‬

‭CodeQL‬
‭We installed CodeQL by following‬‭CodeQL’s installation‬‭guide‬‭.‬

‭After installing CodeQL, we ran the following command to create the project database for‬
‭the Treehouse offchain repository:‬

‭codeql‬‭database‬‭create‬‭treehouse.db‬‭--language=python‬

‭Trail of Bits‬ ‭41‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/iosifache/semgrep-rules-manager/
https://appsec.guide/docs/static-analysis/semgrep/
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://codeql.github.com/docs/codeql-cli/getting-started-with-the-codeql-cli/

‭We then ran the following command to query the database:‬

‭codeql‬‭database‬‭analyze‬‭treehouse.db‬‭--format=sarif-latest‬
‭--output=codeql_res.sarif -- python-lgtm-full‬
‭python-security-and-quality‬‭python-security-experimental‬

‭For more information about CodeQL, refer to the‬‭CodeQL‬‭chapter of the Trail of Bits‬
‭Testing Handbook‬‭.‬

‭Trail of Bits‬ ‭42‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://appsec.guide/docs/static-analysis/codeql/
https://appsec.guide/docs/static-analysis/codeql/

‭E. Fix Review Results‬

‭When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues‬
‭identified in the original report. This work involves a review of specific areas of the source‬
‭code and system configuration, not comprehensive analysis of the system.‬

‭On August 9, 2024, Trail of Bits reviewed the fixes and mitigations implemented by the‬
‭Treehouse team for the off-chain issues identified in this report. We reviewed each fix to‬
‭determine its effectiveness in resolving the associated issue.‬

‭While the team provided commentary as to the status of each issue, they did not provide‬
‭specific references to independent commits or pull requests that address each finding.‬
‭Instead, they provided us with a new version of the‬‭tETH-offchain‬‭repository, identified‬
‭by the hash‬‭c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c‬‭. This new version of the‬
‭codebase is a‬‭major rewrite‬‭of the off-chain code, and as such, the affected code may not‬
‭be present in its original form on the newer codebase. Instead of a direct fix review, we‬
‭sought to see, within reason and time constraints, if the same problems that were reported‬
‭originally are present in the new codebase.‬

‭On August 23, 2024, Trail of Bits reviewed an additional fix for issue‬‭TOB-TETH-7‬‭contained‬
‭in commit‬‭84ef318974eff0c2f0e1c29d0b74416233ae361a‬‭.‬

‭On August 27, 2024,‬‭Trail of Bits reviewed an additional commit‬
‭(‬‭c00db745fdac4dbd8f07635026fd193cc1abaf5c‬‭) that includes the fixes for the‬
‭on-chain issue‬‭TOB-TETH-3‬‭.‬

‭In summary, of the 9 off issues described in this report, Treehouse has resolved 4 issues,‬
‭and has not resolved the remaining 5 issues. For additional information, please see the‬
‭Detailed Fix Review Results below.‬

‭ID‬ ‭Title‬ ‭Status‬

‭1‬ ‭Incorrect accounting logic for stETH deposits‬ ‭Unresolved‬

‭2‬ ‭Chainlink oracles could return stale price data‬ ‭Unresolved‬

‭3‬ ‭Users can redeem tETH tokens to iETH‬ ‭Resolved‬

‭4‬ ‭Secrets checked into source code‬ ‭Unresolved‬

‭5‬ ‭Use of outdated libraries‬ ‭Unresolved‬

‭Trail of Bits‬ ‭43‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/compare/2539d30504aec46d2a753fac2c18a3872691507a...c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c

‭6‬ ‭Potential code execution through deserialization‬ ‭Resolved‬

‭7‬ ‭Overlapping and non-exhaustive conditions while analyzing cases‬ ‭Resolved‬

‭8‬ ‭Potentially duplicate event fetching‬ ‭Unresolved‬

‭9‬ ‭Potentially misleading order comparison‬ ‭Resolved‬

‭Detailed Fix Review Results‬

‭TOB-TETH-1: Incorrect accounting logic for stETH deposits‬
‭Unresolved in commit‬‭c00db74‬‭. The client provided the following context for not fixing this‬
‭issue:‬

‭TOB-TETH-1: After extensive discussion, it is concluded that this issue results from a‬
‭rounding error on Lido's end and is not economically exploitable. The discrepancy is‬
‭minimal, affecting the vault by at most 2 wei of wstETH per deposit, regardless of the‬
‭deposit size. For instance, 100,000 deposits of 1 stETH each would lead to a shortfall of‬
‭only 0.000000000000200000 wstETH, which is negligible. This issue will be acknowledged‬
‭as "will not fix" since it does not pose any significant economic risk or exploitation‬
‭potential.‬

‭TOB-TETH-2: Chainlink oracles could return stale price data‬
‭Unresolved in commit‬‭c00db74‬‭. The client provided the following context for not fixing this‬
‭issue:‬

‭TOB-TETH-2: We primarily use Chainlink oracles to price our vault NAV during‬
‭accounting. Many protocols use oracles directly without implementing staleness checks.‬
‭We can address this issue off-chain by performing our own staleness checks before‬
‭running our accounting processes. This issue will be acknowledged as "will not fix," but‬
‭we will note that staleness checks will likely be performed off-chain before accounting.‬

‭TOB-TETH-3: Users can redeem tETH tokens to iETH‬
‭Resolved in commit‬‭c00db74‬‭. The implementation was updated to override the‬‭_deposit‬
‭and‬‭_withdraw‬‭functions of the inherited‬‭ERC4626‬‭contract. Therefore, the exposed‬
‭redeem‬‭and‬‭withdraw‬‭functions (from the inherited‬‭ERC4626‬‭contract) can no longer be‬
‭called by any account, only by the account with the‬‭Minter‬‭role. Additionally, this limits the‬
‭exposed‬‭mint‬‭function to only be callable by an account with the‬‭Minter‬‭role.‬

‭TOB-TETH-4: Secrets checked into source code‬
‭Unresolved in commit‬‭c6a6a11‬‭. While Treehouse has done a first step towards resolving‬
‭this issue and refactored some of the hard-coded secrets into configuration variables, we‬

‭Trail of Bits‬ ‭44‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-protocol/commit/c00db745fdac4dbd8f07635026fd193cc1abaf5c
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

‭still find valid, unrevoked secrets present in the repository (for instance, several node URLs‬
‭and an Etherscan API key on file‬
‭config/thirdparty_config/strat_config_thirdparty.yml‬‭,‬‭or NodeReal keys‬
‭hardcoded in tests), as well as committed on the repository’s Git history (such as an Infura‬
‭API key,‬‭86c…b5f‬‭).‬

‭The team has noted through comments in the codebase that they intend to move these‬
‭secrets to a safer place (like a secrets vault) before moving to production. This is, however,‬
‭not yet implemented on the codebase as of commit‬‭d00c0a9‬‭,‬‭and we did not observe any‬
‭work towards integration with a secrets vault solution in the codebase.‬

‭TOB-TETH-5: Use of outdated libraries‬
‭Unresolved in commit‬‭c6a6a11‬‭. Treehouse has only updated one dependency in the‬
‭codebase,‬‭urllib3‬‭. We do not observe any new processes or workflows in the repository‬
‭for becoming aware of vulnerable dependencies nor for taking actions to update them.‬

‭The client provided the following context for this finding’s fix status:‬

‭TOB-TETH-5: We commonly use stable versions of packages, which are not necessarily the‬
‭latest versions. It is impractical to mandate the use of the latest versions for all‬
‭dependencies. Therefore, this recommendation is not feasible. No action needed‬

‭TOB-TETH-6: Potential code execution through deserialization‬
‭Resolved in commit‬‭c6a6a11‬‭. The codebase has been refactored and no longer uses pickle‬
‭files for any of its functionality.‬

‭TOB-TETH-7: Overlapping and non-exhaustive conditions while analyzing cases‬
‭Resolved in commit‬‭84ef318‬‭. The code shown in the finding has been reworked and‬
‭rewritten, and its logic now lives as function‬‭analyze_metrics‬‭in file‬
‭src/state_handler/analyze_state.py‬‭. The original fix reviewed in commit‬‭c6a6a11‬
‭was still affected by both logic errors explained in the finding, and sample test cases are‬
‭provided in‬‭appendix G‬‭to more easily showcase said issues; however this has now been‬
‭resolved in commit‬‭84ef318‬‭.‬

‭It is worth noting that some of the new test cases introduced to test this functionality in‬
‭function‬‭test_analyze_metrics_higher‬‭from file‬
‭tests/state_handler/test_analyze_state.py‬‭misuse the‬‭analyze_metrics‬
‭function by providing a threshold value higher than the upper bound on the‬
‭higher_better‬‭case, while the function expects a threshold value lower than the lower‬
‭bound. This expected usage is exemplified by the arithmetic relation between the‬
‭arguments passed by codebase, e.g. while calculating the Lido stake rate. The new test‬
‭functions also do not exercise all edge cases. The expected usage and the relationship‬
‭between threshold, lower and upper bound values has also not been documented in the‬
‭codebase.‬

‭Trail of Bits‬ ‭45‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/84ef318974eff0c2f0e1c29d0b74416233ae361a

‭The client provided the following context for this finding’s fix status:‬

‭Since we are upgrading our code base for v2 vault, many of the test cases may not be‬
‭applicable anymore after some core functions are changed. The issue related with test‬
‭cases are acknowledged and we will be fixing all the test cases together after we finish‬
‭code updates for v2 vault.‬

‭TOB-TETH-8: Potentially duplicate event fetching‬
‭Unresolved in commit‬‭c6a6a11‬‭. The code, now living on function‬‭get_pool_events‬‭in file‬
‭utils/web3_func.py‬‭, continues to exhibit the same‬‭issue of overlapping range‬
‭generation, which might result in duplicated events. A sample test case is provided in‬
‭appendix G‬‭to more easily showcase the issue.‬

‭The client provided the following context for this finding’s fix status:‬

‭TOB-TETH-8: This issue is deemed unlikely to affect our implementation as we are‬
‭querying for a single event type. The possibility of duplicating a single event is negligible.‬
‭The overall code structure has been improved, and the current approach is considered‬
‭sufficient for our needs.‬

‭TOB-TETH-9: Potentially misleading order comparison‬
‭Resolved in commit‬‭c6a6a11‬‭. The‬‭compare_order‬‭function now logs an error and returns‬
‭false if an unsimulated order is detected.‬

‭Trail of Bits‬ ‭46‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/
https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

‭F. Fix Review Status Categories‬

‭The following table describes the statuses used to indicate whether an issue has been‬
‭sufficiently addressed.‬

‭Fix Status‬

‭Status‬ ‭Description‬

‭Undetermined‬ ‭The status of the issue was not determined during this engagement.‬

‭Unresolved‬ ‭The issue persists and has not been resolved.‬

‭Partially Resolved‬ ‭The issue persists but has been partially resolved.‬

‭Resolved‬ ‭The issue has been sufficiently resolved.‬

‭Trail of Bits‬ ‭47‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭G. Fix Review Test Cases‬

‭The following test functions exercise the functionality provided by the‬‭analyze_metrics‬
‭function, in both “‬‭lower_better‬‭” and “‬‭higher_better‬‭”‬‭scenarios, to cover the function‬
‭edge cases. The test failures observed by running these tests against the codebase as of‬
‭commit‬‭c6a6a11‬‭are included as figure G.2.‬

‭def‬‭test_analyze_metrics_lower‬‭(‬‭self‬‭) ->‬‭None‬‭:‬
‭"""Test the "lower_better" case of the analyze_metrics function.‬

‭This assumes the following range setup:‬

‭Lower Upper Threshold‬
‭20 60 100‬
‭"""‬
‭cases = [‬

‭(‬‭10‬‭,‬‭"MODERATE_below_lower"‬‭,‬‭"below lower bound"‬‭),‬
‭(‬‭20‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"exactly lower bound"‬‭),‬
‭(‬‭40‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"within [L, U] bounds"‬‭),‬
‭(‬‭60‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"exactly upper bound"‬‭),‬
‭(‬‭80‬‭,‬‭"MODERATE_above_upper"‬‭,‬‭"above upper bound, under threshold"‬‭),‬
‭(‬‭100‬‭,‬‭"EXTREME_above_thres"‬‭,‬‭"exactly threshold"‬‭),‬
‭(‬‭120‬‭,‬‭"EXTREME_above_thres"‬‭,‬‭"above threshold"‬‭),‬

‭]‬

‭for‬‭(value, expected_result, msg)‬‭in‬‭cases:‬
‭with‬‭self‬‭.subTest(msg=msg, value=value, expected_result=expected_result):‬

‭result = analyze_metrics(‬‭"Metric"‬‭, value,‬‭60‬‭,‬‭20‬‭,‬‭100‬‭,‬‭"lower_better"‬‭)‬
‭self‬‭.assertEqual(result, expected_result)‬

‭def‬‭test_analyze_metrics_higher‬‭(‬‭self‬‭) ->‬‭None‬‭:‬
‭"""Test the "higher_better" case of the analyze_metrics function.‬

‭This assumes the following range setup:‬

‭Threshold Lower Upper‬
‭20 60 100‬
‭"""‬
‭cases = [‬

‭(‬‭10‬‭,‬‭"EXTREME_below_thres"‬‭,‬‭"below threshold"‬‭),‬
‭(‬‭20‬‭,‬‭"EXTREME_below_thres"‬‭,‬‭"exactly threshold"‬‭),‬
‭(‬‭40‬‭,‬‭"EXTREME_below_lower"‬‭,‬‭"below lower bound, greater than threshold"‬‭),‬
‭(‬‭60‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"exactly lower bound"‬‭),‬
‭(‬‭80‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"within [L, U] bounds"‬‭),‬
‭(‬‭100‬‭,‬‭"BAU_within_bounds"‬‭,‬‭"exactly upper bound"‬‭),‬
‭(‬‭120‬‭,‬‭"MODERATE_above_upper"‬‭,‬‭"above upper bound"‬‭),‬

‭]‬

‭for‬‭(value, expected_result, msg)‬‭in‬‭cases:‬
‭with‬‭self‬‭.subTest(msg=msg, value=value, expected_result=expected_result):‬

‭Trail of Bits‬ ‭48‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

https://github.com/treehouse-gaia/tETH-offchain/commit/c6a6a11a46b28a52f69c98ddb62e8853d0bcc23c/

‭result = analyze_metrics(‬‭"Metric"‬‭, value,‬‭100‬‭,‬‭60‬‭,‬‭20‬‭,‬‭"higher_better"‬‭)‬
‭self‬‭.assertEqual(result, expected_result)‬

‭Figure G.1: Test functions for‬‭analyze_metrics‬

‭==‬
‭ERROR: test_analyze_metrics_lower (__main__.TestAnalyzeState) [exactly threshold] (value=‬‭100‬‭,‬
‭expected_result=‬‭'EXTREME_above_thres'‬‭)‬
‭Test the‬‭"lower_better"‬‭case of the analyze_metrics function.‬
‭--‬
‭Traceback (most recent call last):‬
‭File‬‭"DIR/tests/state_handler/test_analyze_state.py"‬‭, line‬‭47‬‭,‬‭in‬‭test_analyze_metrics_lower‬
‭result = analyze_metrics(‬‭"Metric"‬‭, value,‬‭60‬‭,‬‭20‬‭,‬‭100‬‭,‬‭"lower_better"‬‭)‬

‭File‬‭"DIR/tests/state_handler/../../src/state_handler/analyze_state.py"‬‭, line‬‭136‬‭,‬‭in‬
‭analyze_metrics‬

‭raise‬‭Exception‬‭(‬‭"Not found matched alert level."‬‭)‬
‭Exception‬‭: Not found matched alert level.‬

‭==‬
‭FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [below threshold] (value=‬‭10‬‭,‬
‭expected_result=‬‭'EXTREME_below_thres'‬‭)‬
‭Test the‬‭"higher_better"‬‭case of the analyze_metrics function.‬
‭--‬
‭Traceback (most recent call last):‬
‭File‬‭"DIR/tests/state_handler/test_analyze_state.py"‬‭, line‬‭71‬‭,‬‭in‬‭test_analyze_metrics_higher‬
‭self‬‭.assertEqual(result, expected_result)‬

‭AssertionError‬‭:‬‭'EXTREME_below_lower'‬‭!=‬‭'EXTREME_below_thres'‬
‭- EXTREME_below_lower‬
‭? ^^^ ^‬
‭+ EXTREME_below_thres‬
‭? ^^^ ^‬

‭==‬
‭FAIL: test_analyze_metrics_higher (__main__.TestAnalyzeState) [exactly threshold] (value=‬‭20‬‭,‬
‭expected_result=‬‭'EXTREME_below_thres'‬‭)‬
‭Test the‬‭"higher_better"‬‭case of the analyze_metrics function.‬
‭--‬
‭Traceback (most recent call last):‬
‭File‬‭"DIR/tests/state_handler/test_analyze_state.py"‬‭, line‬‭71‬‭,‬‭in‬‭test_analyze_metrics_higher‬
‭self‬‭.assertEqual(result, expected_result)‬

‭AssertionError‬‭:‬‭'EXTREME_below_lower'‬‭!=‬‭'EXTREME_below_thres'‬
‭- EXTREME_below_lower‬
‭? ^^^ ^‬
‭+ EXTREME_below_thres‬
‭? ^^^ ^‬

‭Figure G.2: Test failures observed by running the tests in figure G.1‬

‭The following sample test function exercises the functionality provided by the‬
‭get_pool_events‬‭function. The test failure observed‬‭by running this test is included as‬
‭figure G.4.‬

‭def‬‭test_get_pool_events_no_duplicate‬‭(‬‭self‬‭) ->‬‭None‬‭:‬
‭events = get_pool_events(‬

‭"eth"‬‭,‬
‭"0xae7ab96520de3a18e5e111b5eaab095312d7fe84"‬‭,‬

‭Trail of Bits‬ ‭49‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

‭20412190‬‭-‬‭49999‬‭,‬
‭20412190‬‭+‬‭49999‬‭,‬
‭"TokenRebased"‬‭,‬
‭"https://eth-mainnet.nodereal.io/v1/‬‭REDACTED_SECRET‬‭"‬‭,‬

‭)‬
‭tx_hashes = [event[‬‭"transactionHash"‬‭]‬‭for‬‭event‬‭in‬‭events]‬

‭# use a set to deduplicate events. If there are no repeated‬
‭# events / tx hashes, both the set and the list should be the‬
‭# same length‬
‭self‬‭.assertEqual(‬‭len‬‭(‬‭set‬‭(tx_hashes)),‬‭len‬‭(tx_hashes))‬

‭Figure G.3: Test function for‬‭get_pool_events‬

‭==‬
‭FAIL: test_get_pool_events_no_duplicate (__main__.TestWeb3Func)‬
‭--‬
‭Traceback (most recent call last):‬
‭File‬‭"DIR/tests/utils/test_web3_func.py"‬‭, line‬‭35‬‭,‬‭in‬

‭test_get_pool_events_no_duplicate‬
‭self‬‭.assertEqual(‬‭len‬‭(‬‭set‬‭(tx_hashes)),‬‭len‬‭(tx_hashes))‬

‭AssertionError‬‭:‬‭13‬‭!=‬‭14‬

‭Figure G.4: Test failure observed by running the test in figure G.3‬

‭Trail of Bits‬ ‭50‬ ‭Treehouse tETH Security Assessment‬
‭CONFIDENTIAL‬

