
Signature: f90caf1c6212d56a8b613162ec9031f9c166049838df63644bd05ed61c53667b

Treehouse tETH Audit Report

Treehouse tETH Audit Report
Executive Summary

Scope

Disclaimer

Auditing Process

Vulnerability Severity

Findings

[Low] Chainlink’s latestRoundData Might Return Stale or Incorrect Results

[Low] Missing Derivative Limit and Deposit Availability Checks Will Reve…

[Low] Insufficient Validation for Lido Withdrawal

[Low] Upgradeable Contract Does Not Have __gap[50] Storage Variable

[Low] Missing Strategy Existence Check In isActionWhitelisted

[Low] Lock When Redeeming Funds

[Info] rateProvider Lacks Update Validation

[Info] Contract Address May Be Set to Zero Address

[Info] ActionExecutor::executeActions Does Not Check Lengths Of Input Ar…

[Info] StrategyExecutor::executeOnStrategy Does Not Check Lengths Of Inp…

https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518
https://fuzzland.notion.site/Treehouse-tETH-Audit-Report-112112096c21804e88f6d42c7831e518

Executive Summary
From Sept 20, 2024, to Sept 30, 2024, the Treehouse team engaged
Fuzzland to conduct a thorough security audit of their tETH project.
The primary objective was to identify and mitigate potential security
vulnerabilities, risks, and coding issues to enhance the project's
robustness and reliability. Fuzzland conducted this assessment over 20
person-days, involving 2 engineers who reviewed the code over a span of
10 days. Employing a multifaceted approach that included static
analysis, fuzz testing, formal verification, and manual code review,
the Fuzzland team identified 10 issues across different severity levels
and categories.

Scope
Project Name Treehouse tETH

Repository tETH-protocol

Commit 203f89837f0da1b64b462bbb390ba2c0b0e30a4d

Language Solidity - Ethereum

Scope **/*.sol

https://github.com/treehouse-gaia/tETH-protocol
https://github.com/treehouse-gaia/tETH-protocol

Disclaimer
The audit does not ensure that it has identified every security issue
in the smart contracts, and it should not be seen as a confirmation
that there are no more vulnerabilities. The audit is not exhaustive,
and we recommend further independent audits and setting up a public bug
bounty program for enhanced security verification of the smart
contracts. Additionally, this report should not be interpreted as
personal financial advice or recommendations.

Auditing Process
• Static Analysis: We perform static analysis using our internal tools

and Slither to identify potential vulnerabilities and coding issues.

• Fuzz Testing: We execute fuzz testing with our internal fuzzers to
uncover potential bugs and logic flaws.

• Invariant Development: We convert the project into Foundry project
and develop Foundry invariant tests for the project based on the
code semantics and documentations.

• Invariant Testing: We run multiple fuzz testing tools, including
Foundry and ItyFuzz, to identify violations of invariants we
developed.

• Formal Verification: We develop individual tests for critical
functions and leverage Halmos to prove the functions in question are
not vulnerable.

• Manual Code Review: Our engineers manually review code to identify
potential vulnerabilities not captured by previous methods.

Vulnerability Severity
We divide severity into four distinct levels: high, medium, low, and
info. This classification helps prioritize the issues identified during
the audit based on their potential impact and urgency.

• High Severity Issues represent critical vulnerabilities or flaws
that pose a significant risk to the system's security,
functionality, or performance. These issues can lead to severe
consequences such as fund loss, or major service disruptions if not
addressed immediately. High severity issues typically require urgent
attention and prompt remediation to mitigate potential damage and
ensure the system's integrity and reliability.

• Medium Severity Issues are significant but not critical
vulnerabilities or flaws that can impact the system's security,
functionality, or performance. These issues might not pose an
immediate threat but have the potential to cause considerable harm
if left unaddressed over time. Addressing medium severity issues is
important to maintain the overall health and efficiency of the
system, though they do not require the same level of urgency as high
severity issues.

• Low Severity Issues are minor vulnerabilities or flaws that have a
limited impact on the system's security, functionality, or
performance. These issues generally do not pose a significant risk
and can be addressed in the regular maintenance cycle. While low
severity issues are not critical, resolving them can help improve
the system's overall quality and user experience by preventing the
accumulation of minor problems over time.

• Informational Severity Issues represent informational findings that
do not directly impact the system's security, functionality, or
performance. These findings are typically observations or
recommendations for potential improvements or optimizations.
Addressing info severity issues can enhance the system's robustness
and efficiency but is not necessary for the system's immediate
operation or security. These issues can be considered for future
development or enhancement plans.

Below is a summary of the vulnerabilities with their current status,
highlighting the number of issues identified in each severity category
and their resolution progress.

 Number Resolved

High Severity Issues 0 0

Medium Severity Issues 0 0

Low Severity Issues 6 6

Informational Severity Issues 4 4

Findings

[Low] Chainlink’s latestRoundData Might Return
Stale or Incorrect Results
ChainlinkRateProvider::getRate does not check the time limit for the
returning prices from the oracle. The protocol may get an expired
price.

//ChainlinkRateProvider.sol
function getRate() external view override returns (uint256) {
 (, int256 price, , ,) = pricefeed.latestRoundData();
 require(price > 0, 'Invalid price rate response');
 return uint256(price) * _scalingFactor;
}

Recommendation:

Add timelimit checks.

function getRate() external view override returns (uint256) {
 (, int256 price, ,uint256 updateAt ,) = pricefeed.latestRoundData();
 if(updateAt < block.timestamp - 60*60 /** any time */){
 revert("stale price feed");
 }
 require(price > 0, 'Invalid price rate response');
 return uint256(price) * _scalingFactor;
}

Status: Acknowledged

[Low] Missing Derivative Limit and Deposit
Availability Checks Will Revert The Whole Stake
In the _lidoStake and _lidoStakeAndWrapWETH functions, ETH is directly
converted into derivatives like stETH and wstETH . However, the Lido
protocol enforces a daily staking limit for both stETH and wstETH , as
outlined in their . The current daily limit is set at
150,000 ETH, and the deposit() function will revert if this limit is
reached.

documentation

According to the documentation:

In order to handle the staking surge in case of some unforeseen
market conditions, the Lido protocol implemented staking rate limits
aimed at reducing the surge's impact on the staking queue & Lido’s
socialized rewards distribution model. There is a sliding window
limit that is parametrized
with _maxStakingLimit and _stakeLimitIncreasePerBlock . This means it is
only possible to submit this much ether to the Lido staking
contracts within a 24-hours timeframe. Currently, the daily staking
limit is set at 150,000 ether.

You can picture this as a health globe from Diablo 2 with a maximum
of _maxStakingLimit and regenerating with a constant speed per block.
When you deposit ether to the protocol, the level of health is
reduced by its amount and the current limit becomes smaller and
smaller. When it hits the ground, the transaction gets reverted.

To avoid that, you should check if getCurrentStakeLimit() >=

amountToStake , and if it's not you can go with an alternative route.
The staking rate limits are denominated in ether, thus, it makes no
difference if the stake is being deposited for stETH or using

, the limits apply in both cases.
the

wstETH shortcut

This check is not done in the code below.

https://docs.lido.fi/guides/steth-integration-guide/#staking-rate-limits
https://docs.lido.fi/guides/steth-integration-guide/#staking-rate-limits
https://docs.lido.fi/guides/lido-tokens-integration-guide#wsteth-shortcut
https://docs.lido.fi/guides/lido-tokens-integration-guide#wsteth-shortcut
https://docs.lido.fi/guides/lido-tokens-integration-guide#wsteth-shortcut
https://docs.lido.fi/guides/lido-tokens-integration-guide#wsteth-shortcut

// contracts/strategy/actions/lido/LidoStake.sol
function _lidoStake(Params memory _inputData) internal returns (uint
stEthReceivedAmount, bytes memory logData) {
 TokenUtils.withdrawWeth(_inputData.amount);
 uint stEthBalanceBefore = lidoStEth.getBalance(address(this));
 (bool sent,) = payable(lidoStEth).call{ value: _inputData.amount }('');
 require(sent, 'Failed to send Ether');
 uint stEthBalanceAfter = lidoStEth.getBalance(address(this));
 stEthReceivedAmount = stEthBalanceAfter - stEthBalanceBefore;
 logData = abi.encode(_inputData, stEthReceivedAmount);
}

// contracts/strategy/actions/lido/LidoWrap.sol
function _lidoStakeAndWrapWETH(Params memory _inputData) internal returns
(uint wStEthReceivedAmount) {
 TokenUtils.withdrawWeth(_inputData.amount);

 uint wStEthBalanceBefore = lidoWrappedStEth.getBalance(address(this));
 (bool sent,) = payable(lidoWrappedStEth).call{ value: _inputData.amount }
('');
 require(sent, 'Failed to send Ether');
 uint wStEthBalanceAfter = lidoWrappedStEth.getBalance(address(this));

 wStEthReceivedAmount = wStEthBalanceAfter - wStEthBalanceBefore;
}

Recommendation:

Check the daily limit via getCurrentStakeLimit() >= _inputData.amount

Status: Acknowledged

[Low] Insufficient Validation for Lido Withdrawal
The contract does not correctly validate the withdrawal amounts against
the MAX_STETH_WITHDRAWAL_AMOUNT and MIN_STETH_WITHDRAWAL_AMOUNT limits set
by the Lido protocol ().WithdrawalQueueERC721 | Lido Docs

Each amount in _amounts must be greater than or equal
to MIN_STETH_WITHDRAWAL_AMOUNT and lower than or equal
to MAX_STETH_WITHDRAWAL_AMOUNT

function _lidoWithdraw(Params memory _inputData) internal returns (uint
requestId, bytes memory logData) {
 uint[] memory _amounts = new uint[](1);
 _amounts[0] = _inputData.amount;//@audit

 if (_inputData.useWStEth) {// wstETH
 TokenUtils.approveToken(lidoWrappedStEth, lidoUnStEth,
_inputData.amount);
 requestId = _lidoRequestWithdrawalsWStEth(_amounts)[0];
 } else {// stETH
 TokenUtils.approveToken(lidoStEth, lidoUnStEth, _inputData.amount);
 requestId = _lidoRequestWithdrawals(_amounts)[0];
 }

 logData = abi.encode(_inputData, requestId);
}

Recommendation:

Implement checks to ensure withdrawal amounts are within the allowed
range before requesting the Lido protocol.

Status: Acknowledged

https://docs.lido.fi/contracts/withdrawal-queue-erc721#requestwithdrawals
https://docs.lido.fi/contracts/withdrawal-queue-erc721#requestwithdrawals

[Low] Upgradeable Contract Does Not Have
__gap[50] Storage Variable
To allow for new storage variables in future upgrades in the TAsset
contract, consider adding the __gap[50] variable. See link for a
description of the __gap[50] storage variable.

this

Recommendation:

Add an appropriate storage gap at the end of upgradeable contracts.

Status: Acknowledged

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

[Low] Missing Strategy Existence Check In
isActionWhitelisted
The isActionWhitelisted function in the StrategyStorage contract does not
verify if the given strategy address exists before checking if an
action is whitelisted. This omission could lead to false positives,
potentially allowing unauthorized actions to be executed.

function isActionWhitelisted(address _strategy, bytes4 _actionId) external
view returns (bool _isActionWhitelisted) {
 _isActionWhitelisted =
parameters[_strategy].whitelistedActions.contains(_actionId);//@audit
}

Recommendation:

function isActionWhitelisted(address _strategy, bytes4 _actionId) external
view returns (bool _isActionWhitelisted) {
 _isActionWhitelisted = strategies.contains(_strategy) &&
parameters[_strategy].whitelistedActions.contains(_actionId);
}

Status: Acknowledged

[Low] Lock When Redeeming Funds
In TreehouseRedemption::finalizeRedeem , _returnAmount depends on the current
base interest rate. The amount returned can increase when the price
rises, causing the calculated amount to be greater than
IERC20(_underlying).balanceOf(address(VAULT)) . When a certain asset is in a
scenario with low liquidity and rising prices, the asset cannot be
withdrawn.

function finalizeRedeem(
 uint _redeemIndex
) external nonReentrant whenNotPaused validateRedeem(msg.sender,
_redeemIndex) {
 ...
 uint _assets = IERC4626(TASSET).redeem(_redeem.shares, address(this),
address(this));
 redeeming[msg.sender] -= _redeem.shares;
 totalRedeeming -= _redeem.shares;
 address _underlying = VAULT.getUnderlying();
 uint _returnAmount = _getReturnAmount(_redeem.asset, _redeem.baseRate,
_assets, _getBaseRate());
 ...
 if (_returnAmount > _redeem.asset) revert RedemptionError();
 if (IERC20(_underlying).balanceOf(address(VAULT)) < _returnAmount) revert
InsufficientFundsInVault();
 IInternalAccountingUnit(IAU).burn(_returnAmount);
 ...

Recommendation:

To cope with low liquidity situations, we can maintain a liquidity
reserve in the contract. This reserve can be used to supplement
redemption demand in extreme market conditions.

Status: Acknowledged

[Info] rateProvider Lacks Update Validation
There are several potential problems with owners directly updating
rateProvider

1. The updated rateProvider is not verified to be legitimate

2. There is a lack of time buffer, and in the event of a single point
of account failure, rateProvider will be updated immediately,
providing the potential for price manipulation to be impaired.

function update(address _asset, address _rateProvider) external onlyOwner {
 if (_asset == address(0) || _rateProvider == address(0)) revert
InvalidAddress();
 emit RateProviderUpdated(_asset, _rateProvider, rateProviders[_asset]);
 rateProviders[_asset] = _rateProvider;
}

Recommendation:

Introduce a time lock mechanism, and add _rateProvider legitimacy check.

Status: Acknowledged

[Info] Contract Address May Be Set to Zero
Address
In the ActionRegistry contract, the startContractChange function allows
setting a new contract address to the zero address (0x0), and the
approveContractChange function does not perform an additional zero
address check in subsequent operations. This could lead to contract
addresses being set to zero address.

function startContractChange(bytes4 _id, address _newContractAddr) public
onlyOwner {
 if (!entries[_id].exists) {
 revert EntryNonExistentError(_id);
 }

 entries[_id].inContractChange = true;
 pendingAddresses[_id] = _newContractAddr;

 emit StartContractChange(msg.sender, _id, entries[_id].contractAddr,
_newContractAddr);
}

Recommendation:

Add a zero address check in the startContractChange function.

Status: Acknowledged

[Info] ActionExecutor::executeActions Does Not Check
Lengths Of Input Arrays
If the length of _actionIds exceeds that of _actionCallData and
_paramMapping , the function will revert. Conversely, if _actionIds is
shorter than _actionCallData and _paramMapping , only a portion of the
latter two arrays will be processed. This partial execution won't
trigger a revert, potentially leading to unnoticed parameter omissions
and subsequent issues.

function executeActions(
 bytes4[] calldata _actionIds,
 bytes[] calldata _actionCallData,
 uint8[][] calldata _paramMapping
) public payable {
 bytes32[] memory returnValues = new bytes32[](_actionCallData.length);
 for (uint i; i < _actionIds.length; ++i) {
 returnValues[i] = _executeAction(_actionIds[i], _actionCallData[i], _pa
ramMapping[i], returnValues);
 }
 }

Recommendation:

Add a check to see if the lengths of the three arrays are equal.

Status: Acknowledged

[Info] StrategyExecutor::executeOnStrategy Does Not
Check Lengths Of Input Arrays
The StrategyExecutor::executeOnStrategy function only checks if
_actionCalldata.length matches _actionIds.length , but overlooks verifying
the length of _paramMapping . As indicated by the comment " _paramMapping:

list of param mappings for actions ", if _paramMapping 's length is
insufficient or excessive, some operation parameters might be omitted
or cause the function to revert.

function executeOnStrategy(
 uint _strategyId,
 bytes4[] calldata _actionIds,
 bytes[] calldata _actionCalldata,
 uint8[][] memory _paramMapping
) external payable {
 //......
 if (_actionCalldata.length != _actionIds.length) revert ArrayLengthMismatch
();

 //......

 IStrategy(_stratAddress).callExecute(
 ACTION_EXECUTOR,
 abi.encodeWithSelector(EXECUTE_ACTIONS_SELECTOR, _actionIds, _actionCalld
ata, _paramMapping)
);

 emit ExecutionEvent(_actionIds, _strategyId);
}

Recommendation:

Add a check to see if the lengths of the three arrays are equal.

Status: Acknowledged

